Search for blocks/addresses/...
Proofgold Proof
pf
Let x0 of type
ι
be given.
Assume H0:
RealsStruct
x0
.
Apply set_ext with
RealsStruct_Q
x0
,
{x1 ∈
field0
x0
|
∃ x2 .
and
(
x2
∈
{x3 ∈
field0
x0
|
or
(
or
(
explicit_Field_minus
(
field0
x0
)
(
field4
x0
)
(
RealsStruct_one
x0
)
(
field1b
x0
)
(
field2b
x0
)
x3
∈
RealsStruct_Npos
x0
)
(
x3
=
field4
x0
)
)
(
x3
∈
RealsStruct_Npos
x0
)
}
)
(
∃ x3 .
and
(
x3
∈
RealsStruct_Npos
x0
)
(
field2b
x0
x3
x1
=
x2
)
)
}
leaving 2 subgoals.
Let x1 of type
ι
be given.
Assume H1:
x1
∈
RealsStruct_Q
x0
.
Apply SepE with
field0
x0
,
2a63f..
x0
,
x1
,
x1
∈
{x2 ∈
field0
x0
|
∃ x3 .
and
(
x3
∈
{x4 ∈
field0
x0
|
or
(
or
(
explicit_Field_minus
(
field0
x0
)
(
field4
x0
)
(
RealsStruct_one
x0
)
(
field1b
x0
)
(
field2b
x0
)
x4
∈
RealsStruct_Npos
x0
)
(
x4
=
field4
x0
)
)
(
x4
∈
RealsStruct_Npos
x0
)
}
)
(
∃ x4 .
and
(
x4
∈
RealsStruct_Npos
x0
)
(
field2b
x0
x4
x2
=
x3
)
)
}
leaving 2 subgoals.
The subproof is completed by applying H1.
Assume H2:
x1
∈
field0
x0
.
Assume H3:
2a63f..
x0
x1
.
Apply SepI with
field0
x0
,
λ x2 .
∃ x3 .
and
(
x3
∈
{x4 ∈
field0
x0
|
or
(
or
(
explicit_Field_minus
(
field0
x0
)
(
field4
x0
)
(
RealsStruct_one
x0
)
(
field1b
x0
)
(
field2b
x0
)
x4
∈
RealsStruct_Npos
x0
)
(
x4
=
field4
x0
)
)
(
x4
∈
RealsStruct_Npos
x0
)
}
)
(
∃ x4 .
and
(
x4
∈
RealsStruct_Npos
x0
)
(
field2b
x0
x4
x2
=
x3
)
)
,
x1
leaving 2 subgoals.
The subproof is completed by applying H2.
Apply unknownprop_87925c67a03b35d7e2b95672013636ce0205b3bb767f5d1c0c78f69cadaeb3e9 with
x0
,
λ x2 x3 .
∃ x4 .
and
(
x4
∈
x2
)
(
∃ x5 .
and
(
x5
∈
RealsStruct_Npos
x0
)
(
field2b
x0
x5
x1
=
x4
)
)
leaving 2 subgoals.
The subproof is completed by applying H0.
The subproof is completed by applying H3.
Let x1 of type
ι
be given.
Assume H1:
x1
∈
{x2 ∈
field0
x0
|
∃ x3 .
and
(
x3
∈
{x4 ∈
field0
x0
|
or
(
or
(
explicit_Field_minus
(
field0
x0
)
(
field4
x0
)
(
RealsStruct_one
x0
)
(
field1b
x0
)
(
field2b
x0
)
x4
∈
RealsStruct_Npos
x0
)
(
x4
=
field4
x0
)
)
(
x4
∈
RealsStruct_Npos
x0
)
}
)
(
∃ x4 .
and
(
x4
∈
RealsStruct_Npos
x0
)
(
field2b
x0
x4
x2
=
x3
)
)
}
.
Apply SepE with
field0
x0
,
λ x2 .
∃ x3 .
and
(
x3
∈
{x4 ∈
field0
x0
|
or
(
or
(
explicit_Field_minus
(
field0
x0
)
(
field4
x0
)
(
RealsStruct_one
x0
)
(
field1b
x0
)
(
field2b
x0
)
x4
∈
RealsStruct_Npos
x0
)
(
x4
=
field4
x0
)
)
(
x4
∈
RealsStruct_Npos
x0
)
}
)
(
∃ x4 .
and
...
...
)
,
...
,
...
leaving 2 subgoals.
...
...
■