Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type (ιο) → ο be given.
Let x3 of type (ιο) → ο be given.
Let x4 of type ιι be given.
Let x5 of type ιι be given.
Let x6 of type ιο be given.
Let x7 of type ιο be given.
Let x8 of type ι be given.
Let x9 of type ι be given.
Assume H0: 2e40c.. x0 x2 x4 x6 x8 = 2e40c.. x1 x3 x5 x7 x9.
Claim L1: x1 = f482f.. (2e40c.. x0 x2 x4 x6 x8) 4a7ef..
Apply unknownprop_f50dd06fbf119506e751474ab9fe55f5c76bee0d70f414d468384ad9cfaf2c39 with 2e40c.. x0 x2 x4 x6 x8, x1, x3, x5, x7, x9.
The subproof is completed by applying H0.
Claim L2: x0 = x1
Apply L1 with λ x10 x11 . x0 = x11.
The subproof is completed by applying unknownprop_5091b23ace185de1439c9993ecf5d34c3889f1adbf8fc4314bc1ac1fed4972cf with x0, x2, x4, x6, x8.
Apply and5I with x0 = x1, ∀ x10 : ι → ο . (∀ x11 . x10 x11prim1 x11 x0)x2 x10 = x3 x10, ∀ x10 . prim1 x10 x0x4 x10 = x5 x10, ∀ x10 . prim1 x10 x0x6 x10 = x7 x10, x8 = x9 leaving 5 subgoals.
The subproof is completed by applying L2.
Let x10 of type ιο be given.
Assume H3: ∀ x11 . x10 x11prim1 x11 x0.
Apply unknownprop_a13b376ead7440cfb8068d51b0fc26b8bee9b2fd7f0c4983ba28169597604378 with x0, x2, x4, x6, x8, x10, λ x11 x12 : ο . x12 = x3 x10 leaving 2 subgoals.
The subproof is completed by applying H3.
Claim L4: ∀ x11 . x10 x11prim1 x11 x1
Apply L2 with λ x11 x12 . ∀ x13 . x10 x13prim1 x13 x11.
The subproof is completed by applying H3.
Apply H0 with λ x11 x12 . decode_c (f482f.. x12 (4ae4a.. 4a7ef..)) x10 = x3 x10.
Let x11 of type οοο be given.
Apply unknownprop_a13b376ead7440cfb8068d51b0fc26b8bee9b2fd7f0c4983ba28169597604378 with x1, x3, x5, x7, x9, x10, λ x12 x13 : ο . x11 x13 x12.
The subproof is completed by applying L4.
Let x10 of type ι be given.
Assume H3: prim1 x10 x0.
Apply unknownprop_08751a2182e392d896e3e3f4a36e5bf5e3e32f0eec6892705c231ffefc7cc6f0 with x0, x2, x4, x6, x8, x10, λ x11 x12 . x12 = x5 x10 leaving 2 subgoals.
The subproof is completed by applying H3.
Claim L4: prim1 x10 x1
Apply L2 with λ x11 x12 . prim1 x10 x11.
The subproof is completed by applying H3.
Apply H0 with λ x11 x12 . f482f.. (f482f.. x12 (4ae4a.. (4ae4a.. 4a7ef..))) x10 = x5 x10.
Let x11 of type ιιο be given.
Apply unknownprop_08751a2182e392d896e3e3f4a36e5bf5e3e32f0eec6892705c231ffefc7cc6f0 with x1, x3, x5, x7, x9, x10, λ x12 x13 . x11 x13 x12.
The subproof is completed by applying L4.
Let x10 of type ι be given.
Assume H3: prim1 x10 x0.
Apply unknownprop_04e910d1de9e4552e9264adbcc682f73b876009ed78e0a9d5f152658b15ea3ba with x0, x2, x4, x6, x8, x10, λ x11 x12 : ο . x12 = x7 x10 leaving 2 subgoals.
The subproof is completed by applying H3.
Claim L4: prim1 x10 x1
Apply L2 with λ x11 x12 . prim1 x10 x11.
The subproof is completed by applying H3.
Apply H0 with λ x11 x12 . decode_p (f482f.. x12 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) x10 = x7 x10.
Let x11 of type οοο be given.
Apply unknownprop_04e910d1de9e4552e9264adbcc682f73b876009ed78e0a9d5f152658b15ea3ba with x1, x3, x5, x7, x9, x10, λ x12 x13 : ο . x11 x13 x12.
The subproof is completed by applying L4.
Apply unknownprop_3ab7806cf0ff3d8bee638a9c7ebd5be410ba51ca429236345648ab7856c58a31 with x0, x2, x4, x6, x8, λ x10 x11 . x11 = x9.
Apply H0 with λ x10 x11 . f482f.. x11 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) = x9.
Let x10 of type ιιο be given.
The subproof is completed by applying unknownprop_3ab7806cf0ff3d8bee638a9c7ebd5be410ba51ca429236345648ab7856c58a31 with x1, x3, x5, x7, x9, λ x11 x12 . x10 x12 x11.