Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ιο be given.
Assume H0: ∀ x1 . x0 x1struct_r x1.
Assume H1: ∀ x1 x2 . x0 x1x0 x2x0 (BinReln_product x1 x2).
Let x1 of type ι be given.
Let x2 of type ι be given.
Assume H2: x0 x1.
Assume H3: x0 x2.
Claim L4: ...
...
Apply L4 with and (and (and (and (and (x0 x1) (x0 x2)) (x0 (BinReln_product x1 x2))) (BinRelnHom (BinReln_product x1 x2) x1 (lam (setprod (ap x1 0) (ap x2 0)) (λ x3 . ap x3 0)))) (BinRelnHom (BinReln_product x1 x2) x2 (lam (setprod (ap x1 0) (ap x2 0)) (λ x3 . ap x3 1)))) (∀ x3 . ...∀ x4 x5 . ......and (and (and (BinRelnHom x3 (BinReln_product x1 x2) ((λ x6 x7 x8 . lam (ap x6 0) (λ x9 . lam 2 (λ x10 . If_i (x10 = 0) (ap x7 x9) (ap x8 x9)))) x3 x4 x5)) (struct_comp x3 (BinReln_product x1 x2) x1 (lam (setprod (ap x1 0) (ap x2 0)) (λ x6 . ap x6 0)) ((λ x6 x7 x8 . lam (ap x6 0) (λ x9 . lam 2 (λ x10 . If_i (x10 = 0) (ap x7 x9) (ap x8 x9)))) x3 x4 x5) = x4)) (struct_comp x3 (BinReln_product x1 x2) x2 (lam (setprod (ap x1 0) (ap x2 0)) (λ x6 . ap x6 1)) ((λ x6 x7 x8 . lam (ap x6 0) (λ x9 . lam 2 (λ x10 . If_i (x10 = 0) (ap x7 x9) (ap x8 x9)))) x3 x4 x5) = x5)) (∀ x6 . BinRelnHom x3 (BinReln_product x1 ...) ...struct_comp x3 (BinReln_product x1 x2) x1 (lam (setprod (ap x1 0) (ap x2 0)) (λ x7 . ap x7 0)) x6 = x4struct_comp x3 (BinReln_product x1 x2) x2 (lam (setprod (ap x1 0) (ap x2 0)) (λ x7 . ap x7 1)) x6 = x5x6 = (λ x7 x8 x9 . lam (ap x7 0) (λ x10 . lam 2 (λ x11 . If_i (x11 = 0) (ap x8 x10) (ap x9 x10)))) x3 x4 x5)).
...