Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ιο be given.
Assume H0: x0 1.
Assume H1: x0 omega.
Let x1 of type ο be given.
Assume H2: ∀ x2 . (∃ x3 : ι → ι . ∃ x4 x5 x6 . ∃ x7 : ι → ι → ι → ι . MetaCat_nno_p x0 HomSet (λ x8 . lam_id x8) (λ x8 x9 x10 x11 x12 . lam_comp x8 x11 x12) x2 x3 x4 x5 x6 x7)x1.
Apply H2 with 1.
Let x2 of type ο be given.
Assume H3: ∀ x3 : ι → ι . (∃ x4 x5 x6 . ∃ x7 : ι → ι → ι → ι . MetaCat_nno_p x0 HomSet (λ x8 . lam_id x8) (λ x8 x9 x10 x11 x12 . lam_comp x8 x11 x12) 1 x3 x4 x5 x6 x7)x2.
Apply H3 with λ x3 . lam x3 (λ x4 . 0).
Let x3 of type ο be given.
Assume H4: ∀ x4 . (∃ x5 x6 . ∃ x7 : ι → ι → ι → ι . MetaCat_nno_p x0 HomSet (λ x8 . lam_id x8) (λ x8 x9 x10 x11 x12 . lam_comp x8 x11 x12) 1 (λ x8 . lam x8 (λ x9 . 0)) x4 x5 x6 x7)x3.
Apply H4 with omega.
Let x4 of type ο be given.
Assume H5: ∀ x5 . (∃ x6 . ∃ x7 : ι → ι → ι → ι . MetaCat_nno_p x0 HomSet (λ x8 . lam_id x8) (λ x8 x9 x10 x11 x12 . lam_comp x8 x11 x12) 1 (λ x8 . lam x8 (λ x9 . 0)) omega x5 x6 x7)x4.
Apply H5 with lam 1 (λ x5 . 0).
Let x5 of type ο be given.
Assume H6: ∀ x6 . (∃ x7 : ι → ι → ι → ι . MetaCat_nno_p x0 HomSet (λ x8 . lam_id x8) (λ x8 x9 x10 x11 x12 . lam_comp x8 x11 x12) 1 (λ x8 . lam x8 (λ x9 . 0)) omega (lam 1 (λ x8 . 0)) x6 x7)x5.
Apply H6 with lam omega (λ x6 . ordsucc x6).
Let x6 of type ο be given.
Assume H7: ∀ x7 : ι → ι → ι → ι . MetaCat_nno_p x0 HomSet (λ x8 . lam_id x8) (λ x8 x9 x10 x11 x12 . lam_comp x8 x11 x12) 1 (λ x8 . lam x8 (λ x9 . 0)) omega (lam 1 (λ x8 . 0)) (lam omega (λ x8 . ordsucc x8)) x7x6.
Apply H7 with λ x7 x8 x9 . lam omega (λ x10 . nat_primrec (ap x8 0) (λ x11 x12 . ap x9 x12) x10).
Apply unknownprop_b6c6271c48298d19f3c93efd26efbc828f58047d76fdd16d468ddcd04fb28691 with x0 leaving 2 subgoals.
The subproof is completed by applying H0.
The subproof is completed by applying H1.