Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Assume H0: x1{x2 ∈ setexp x0 x0|bij x0 x0 (λ x3 . ap x2 x3)}.
Apply SepE with setexp x0 x0, λ x2 . bij x0 x0 (λ x3 . ap x2 x3), x1, and (and (lam x0 (λ x2 . inv x0 (λ x3 . ap x1 x3) x2){x2 ∈ setexp x0 x0|bij x0 x0 (λ x3 . ap x2 x3)}) (lam x0 (λ x2 . ap (lam x0 (λ x3 . inv x0 (λ x4 . ap x1 x4) x3)) (ap x1 x2)) = lam x0 (λ x2 . x2))) (lam x0 (λ x2 . ap x1 (ap (lam x0 (λ x3 . inv x0 (λ x4 . ap x1 x4) x3)) x2)) = lam x0 (λ x2 . x2)) leaving 2 subgoals.
The subproof is completed by applying H0.
Assume H1: x1setexp x0 x0.
Assume H2: bij x0 x0 (λ x2 . ap x1 x2).
Claim L3: ...
...
Claim L4: ...
...
Claim L5: ...
...
Claim L6: ...
...
Claim L7: ...
...
Claim L8: ...
...
Claim L9: ...
...
Apply and3I with lam x0 (λ x2 . inv x0 (λ x3 . ap x1 x3) x2){x2 ∈ setexp x0 x0|bij x0 x0 (λ x3 . ap x2 x3)}, lam x0 (λ x2 . ap (lam x0 (λ x3 . inv x0 (λ x4 . ap x1 x4) x3)) (ap x1 x2)) = lam x0 (λ x2 . x2), lam x0 (λ x2 . ap x1 (ap (lam x0 (λ x3 . inv x0 (λ x4 . ap x1 x4) x3)) x2)) = lam x0 (λ x2 . x2) leaving 3 subgoals.
Apply SepI with setexp x0 x0, λ x2 . bij x0 x0 (λ x3 . ap x2 x3), lam x0 (λ x2 . inv x0 (λ x3 . ap x1 x3) x2) leaving 2 subgoals.
Apply lam_Pi with x0, λ x2 . x0, λ x2 . inv x0 (λ x3 . ap x1 x3) x2.
The subproof is completed by applying L7.
Apply and3I with ∀ x2 . x2x0ap (lam x0 (λ x3 . inv x0 (λ x4 . ap x1 x4) x3)) x2x0, ∀ x2 . x2x0∀ x3 . x3x0ap (lam x0 (λ x4 . inv x0 (λ x5 . ap x1 x5) x4)) x2 = ap (lam x0 (λ x4 . inv x0 (λ x5 . ap x1 x5) x4)) x3x2 = x3, ∀ x2 . ...∃ x3 . and (x3...) ... leaving 3 subgoals.
...
...
...
...
...