Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ιο be given.
Let x3 of type ιο be given.
Let x4 of type ιο be given.
Let x5 of type ιο be given.
Let x6 of type ι be given.
Let x7 of type ι be given.
Let x8 of type ι be given.
Let x9 of type ι be given.
Assume H0: 97f57.. x0 x2 x4 x6 x8 = 97f57.. x1 x3 x5 x7 x9.
Claim L1: x1 = f482f.. (97f57.. x0 x2 x4 x6 x8) 4a7ef..
Apply unknownprop_8e68b72ff83a67e1456a1a376e872d88086fa122267f5962fc138e7f4ac83a5e with 97f57.. x0 x2 x4 x6 x8, x1, x3, x5, x7, x9.
The subproof is completed by applying H0.
Claim L2: x0 = x1
Apply L1 with λ x10 x11 . x0 = x11.
The subproof is completed by applying unknownprop_2f9155626f147b3fc200dd051be41ad101ba085865e832398884ce43b32f1585 with x0, x2, x4, x6, x8.
Apply and5I with x0 = x1, ∀ x10 . prim1 x10 x0x2 x10 = x3 x10, ∀ x10 . prim1 x10 x0x4 x10 = x5 x10, x6 = x7, x8 = x9 leaving 5 subgoals.
The subproof is completed by applying L2.
Let x10 of type ι be given.
Assume H3: prim1 x10 x0.
Apply unknownprop_bd51551c09ef39684435eed57dd87ec613789fe33493ca284bf145865143f86b with x0, x2, x4, x6, x8, x10, λ x11 x12 : ο . x12 = x3 x10 leaving 2 subgoals.
The subproof is completed by applying H3.
Claim L4: prim1 x10 x1
Apply L2 with λ x11 x12 . prim1 x10 x11.
The subproof is completed by applying H3.
Apply H0 with λ x11 x12 . decode_p (f482f.. x12 (4ae4a.. 4a7ef..)) x10 = x3 x10.
Let x11 of type οοο be given.
Apply unknownprop_bd51551c09ef39684435eed57dd87ec613789fe33493ca284bf145865143f86b with x1, x3, x5, x7, x9, x10, λ x12 x13 : ο . x11 x13 x12.
The subproof is completed by applying L4.
Let x10 of type ι be given.
Assume H3: prim1 x10 x0.
Apply unknownprop_0af29260793bdce63e5338c46317de197d0870ce61389b7d6c500492d9513ffb with x0, x2, x4, x6, x8, x10, λ x11 x12 : ο . x12 = x5 x10 leaving 2 subgoals.
The subproof is completed by applying H3.
Claim L4: prim1 x10 x1
Apply L2 with λ x11 x12 . prim1 x10 x11.
The subproof is completed by applying H3.
Apply H0 with λ x11 x12 . decode_p (f482f.. x12 (4ae4a.. (4ae4a.. 4a7ef..))) x10 = x5 x10.
Let x11 of type οοο be given.
Apply unknownprop_0af29260793bdce63e5338c46317de197d0870ce61389b7d6c500492d9513ffb with x1, x3, x5, x7, x9, x10, λ x12 x13 : ο . x11 x13 x12.
The subproof is completed by applying L4.
Apply unknownprop_a457921de9e3a9aefe70df2eec893ba5dbc45045931175acd504aa4cad6ec7e9 with x0, x2, x4, x6, x8, λ x10 x11 . x11 = x7.
Apply H0 with λ x10 x11 . f482f.. x11 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))) = x7.
Let x10 of type ιιο be given.
The subproof is completed by applying unknownprop_a457921de9e3a9aefe70df2eec893ba5dbc45045931175acd504aa4cad6ec7e9 with x1, x3, x5, x7, x9, λ x11 x12 . x10 x12 x11.
Apply unknownprop_23f154ef6b58bbe68ebb13d56aa20b2d841e66bc0527438810d21ee7b3f49457 with x0, x2, x4, x6, x8, λ x10 x11 . x11 = x9.
Apply H0 with λ x10 x11 . f482f.. x11 (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) = x9.
Let x10 of type ιιο be given.
The subproof is completed by applying unknownprop_23f154ef6b58bbe68ebb13d56aa20b2d841e66bc0527438810d21ee7b3f49457 with x1, x3, x5, x7, x9, λ x11 x12 . x10 x12 x11.