Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ο be given.
Assume H0: ∀ x1 : ι → ι . (∃ x2 : ι → ι → ι → ι . ∃ x3 x4 : ι → ι . MetaAdjunction_strict (λ x5 . True) HomSet (λ x5 . lam_id x5) (λ x5 x6 x7 x8 x9 . lam_comp x5 x8 x9) IrreflexiveTransitiveReln BinRelnHom struct_id struct_comp x1 x2 (λ x5 . ap x5 0) (λ x5 x6 x7 . x7) x3 x4)x0.
Apply H0 with λ x1 . pack_r x1 (λ x2 x3 . False).
Let x1 of type ο be given.
Assume H1: ∀ x2 : ι → ι → ι → ι . (∃ x3 x4 : ι → ι . MetaAdjunction_strict (λ x5 . True) HomSet (λ x5 . lam_id x5) (λ x5 x6 x7 x8 x9 . lam_comp x5 x8 x9) IrreflexiveTransitiveReln BinRelnHom struct_id struct_comp (λ x5 . pack_r x5 (λ x6 x7 . False)) x2 (λ x5 . ap x5 0) (λ x5 x6 x7 . x7) x3 x4)x1.
Apply H1 with λ x2 x3 x4 . x4.
Let x2 of type ο be given.
Assume H2: ∀ x3 : ι → ι . (∃ x4 : ι → ι . MetaAdjunction_strict (λ x5 . True) HomSet (λ x5 . lam_id x5) (λ x5 x6 x7 x8 x9 . lam_comp x5 x8 x9) IrreflexiveTransitiveReln BinRelnHom struct_id struct_comp (λ x5 . pack_r x5 (λ x6 x7 . False)) (λ x5 x6 x7 . x7) (λ x5 . ap x5 0) (λ x5 x6 x7 . x7) x3 x4)x2.
Apply H2 with λ x3 . lam_id x3.
Let x3 of type ο be given.
Assume H3: ∀ x4 : ι → ι . MetaAdjunction_strict (λ x5 . True) HomSet (λ x5 . lam_id x5) (λ x5 x6 x7 x8 x9 . lam_comp x5 x8 x9) IrreflexiveTransitiveReln BinRelnHom struct_id struct_comp (λ x5 . pack_r x5 (λ x6 x7 . False)) (λ x5 x6 x7 . x7) (λ x5 . ap x5 0) (λ x5 x6 x7 . x7) (λ x5 . lam_id x5) x4x3.
Apply H3 with λ x4 . lam_id (ap x4 0).
Claim L4: ...
...
Claim L5: ...
...
Claim L6: ...
...
Apply unknownprop_712520f713b96d5afd10321cea9a3c978868fc53aa35a29461e902d5b5a4ba79 with λ x4 . True, HomSet, λ x4 . lam_id x4, λ x4 x5 x6 x7 x8 . lam_comp x4 x7 x8, IrreflexiveTransitiveReln, BinRelnHom, struct_id, struct_comp, λ x4 . pack_r x4 (λ x5 x6 . False), λ x4 x5 x6 . x6, λ x4 . ap x4 0, λ x4 x5 x6 . x6, λ x4 . lam_id x4, λ x4 . lam_id (ap x4 0) leaving 5 subgoals.
Apply unknownprop_3d05796578cdc17ebd2096167db48ecef934256d250d1637eb5dd67225cdfe05 with λ x4 . True, HomSet, λ x4 . lam_id x4, λ x4 x5 x6 x7 x8 . lam_comp x4 x7 x8, IrreflexiveTransitiveReln, BinRelnHom, struct_id, struct_comp, λ x4 . pack_r x4 (λ x5 x6 . False), λ x4 x5 x6 . x6 leaving 3 subgoals.
The subproof is completed by applying unknownprop_dcf5739aa5fe0adc626fd983737b233fe68652dff14c53b3d75823dcf2542d41.
The subproof is completed by applying unknownprop_3cfb35338d6b874e5c5bd0760253f7ac65e99ffc814bd52eef4adff85a56dbe0.
Apply unknownprop_795e291855a044d4d636c961caa1600704603cc02e33a7b37aa66e8d7f6512db with λ x4 . True, HomSet, λ x4 . lam_id x4, λ x4 x5 x6 x7 x8 . lam_comp x4 x7 x8, IrreflexiveTransitiveReln, BinRelnHom, struct_id, struct_comp, λ x4 . pack_r x4 (λ x5 x6 . False), λ x4 x5 x6 . x6 leaving 4 subgoals.
Let x4 of type ι be given.
Assume H7: (λ x5 . True) x4.
Apply unknownprop_dbb6377af3127d2bf8cd888143d856b4a86f0ec975822a440e0313d91ee07474 with x4, λ x5 x6 . False leaving 2 subgoals.
Let x5 of type ι be given.
Assume H8: x5x4.
Assume H9: False.
The subproof is completed by applying H9.
Let x5 of type ι be given.
Assume H8: x5x4.
Let x6 of type ι be given.
Assume H9: x6x4.
Let x7 of type ι be given.
Assume H10: x7x4.
Assume H11: (λ x8 x9 . False) x5 x6.
Assume H12: (λ x8 x9 . False) x6 x7.
The subproof is completed by applying H11.
...
...
...
...
...
...
...