Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ιιι be given.
Assume H0: ∀ x2 . In x2 x0∀ x3 . In x3 x0In (x1 x2 x3) x0.
Let x2 of type ιιιι be given.
Assume H1: ∀ x3 . In x3 x0∀ x4 . In x4 x0∀ x5 . In x5 x0In (x2 x3 x4 x5) x0.
Let x3 of type ι be given.
Assume H2: In x3 x0.
Let x4 of type ι be given.
Assume H3: In x4 x0.
Let x5 of type ιιι be given.
Assume H4: ∀ x6 . In x6 x0∀ x7 . In x7 x0In (x5 x6 x7) x0.
Let x6 of type ιιι be given.
Assume H5: ∀ x7 . In x7 x0∀ x8 . In x8 x0In (x6 x7 x8) x0.
Let x7 of type ι be given.
Assume H6: In x7 x0.
Let x8 of type ιιι be given.
Assume H7: ∀ x9 . In x9 x0∀ x10 . In x10 x0In (x8 x9 x10) x0.
Assume H8: ∀ x9 . In x9 x0(x8 x9 x7 = x9False)False.
Assume H9: ∀ x9 . In x9 x0∀ x10 . In x10 x0(x8 x9 (x1 x9 x10) = x10False)False.
Assume H10: ∀ x9 . In x9 x0∀ x10 . In x10 x0(x6 x9 x10 = x1 x9 (x8 x10 x9)False)False.
Assume H11: ∀ x9 . In x9 x0(x1 x7 x9 = x9False)False.
Assume H12: ∀ x9 . In x9 x0(x5 x7 x9 = x9False)False.
Assume H13: ∀ x9 . In x9 x0∀ x10 . In x10 x0(x2 x9 x7 x10 = x10False)False.
Assume H14: ∀ x9 . In x9 x0∀ x10 . In x10 x0∀ x11 . In x11 x0(x2 x9 x10 (x6 x9 (x5 x10 (x2 x9 x10 (x6 x9 (x5 x10 x11))))) = x11False)False.
Assume H15: ∀ x9 . In x9 x0∀ x10 . In x10 x0∀ x11 . In x11 x0(x2 x9 x10 (x6 x9 (x6 x10 (x2 x9 x10 (x6 x9 (x6 x10 (x2 x9 x10 (x6 x9 (x6 x10 x11)))))))) = x11False)False.
set y9 to be ...
Claim L16: ...
...
set y10 to be ...
Claim L17: ...
...
Assume H18: x8 y9 y10 = x8 y10 y9False.
Apply H13 with ..., ... leaving 3 subgoals.
...
...
...