Let x0 of type ι → ι → ο be given.
Let x1 of type ι → ι → ο be given.
Let x2 of type ι → ο be given.
Let x3 of type ι be given.
Let x4 of type ι → ο be given.
Let x5 of type ι be given.
Let x6 of type ι → ο be given.
Let x7 of type ι be given.
Let x8 of type ι be given.
Let x9 of type ι be given.
Let x10 of type ι → ι be given.
Let x11 of type ι → ι be given.
Let x12 of type ι be given.
Let x13 of type ι → ι → ι → ι be given.
Let x14 of type ι → ο be given.
Let x15 of type ι be given.
Let x16 of type ι be given.
Let x17 of type ι → ι → ι be given.
Let x18 of type ι → ι → ι be given.
Let x19 of type ι → ι → ι → ι → ι be given.
Let x20 of type ι → ι → ι → ι be given.
Let x21 of type ι → ι → ι → ι be given.
Let x22 of type ι → ι → ι be given.
Let x23 of type ι → ι be given.
Let x24 of type ι → ι be given.
Let x25 of type ι → ι → ι be given.
Let x26 of type ι → ι → ι be given.
Let x27 of type ι → ι → ι be given.
Let x28 of type ι be given.
Let x29 of type ι be given.
Let x30 of type ι → ο be given.
Let x31 of type ι → ο be given.
Let x32 of type ι be given.
Let x33 of type ι be given.
Let x34 of type ι → ο be given.
Assume H5:
∀ x35 x36 . x34 x36 ⟶ (x36 = x35 ⟶ False) ⟶ x34 x35 ⟶ False.
Assume H6:
∀ x35 x36 . x0 x35 x36 ⟶ x34 x36 ⟶ False.
Assume H7:
∀ x35 . x34 x35 ⟶ (x35 = x33 ⟶ False) ⟶ False.
Assume H8:
∀ x35 x36 . x1 x35 x36 ⟶ (x34 x36 ⟶ False) ⟶ (x0 x35 x36 ⟶ False) ⟶ False.
Assume H9:
∀ x35 x36 . x0 x36 x35 ⟶ (x1 x36 x35 ⟶ False) ⟶ False.
Assume H10:
x2 x3 ⟶ False.
Assume H11:
x34 x32 ⟶ False.
Assume H18:
x34 x29 ⟶ False.
Assume H19:
(x34 x28 ⟶ False) ⟶ False.
Assume H21:
x34 x8 ⟶ False.
Assume H24:
∀ x35 . (x34 x35 ⟶ False) ⟶ x31 x35 ⟶ x34 (x10 x35) ⟶ False.
Assume H25:
∀ x35 x36 x37 x38 . (x31 (x27 (x26 x36 x35) (x26 x38 x37)) ⟶ False) ⟶ False.
Assume H26:
∀ x35 x36 . (x31 (x11 (x26 x36 x35)) ⟶ False) ⟶ False.
Assume H27:
∀ x35 x36 . x34 (x27 x35 x36) ⟶ False.
Assume H28:
∀ x35 . (x2 (x11 x35) ⟶ False) ⟶ False.
Assume H29:
∀ x35 . x34 (x11 x35) ⟶ False.
Assume H30:
∀ x35 . x2 x35 ⟶ x31 x35 ⟶ (x2 (x10 x35) ⟶ False) ⟶ False.
Assume H31:
∀ x35 x36 . x34 x36 ⟶ x31 x36 ⟶ (x34 (x25 x36 x35) ⟶ False) ⟶ False.
Assume H32:
∀ x35 x36 . x31 x36 ⟶ x34 x35 ⟶ (x34 (x25 x36 x35) ⟶ False) ⟶ False.
Assume H33:
∀ x35 x36 . x34 (x26 x35 x36) ⟶ False.
Assume H34:
(x34 x33 ⟶ False) ⟶ False.
Assume H35:
∀ x35 x36 . (x30 (x11 (x26 x36 x35)) ⟶ False) ⟶ False.
Assume H36:
∀ x35 . x34 x35 ⟶ (x34 (x10 x35) ⟶ False) ⟶ False.
Assume H37:
∀ x35 . (x1 (x24 x35) x35 ⟶ False) ⟶ False.
Assume H38:
(x34 x12 ⟶ False) ⟶ False.
Assume H39:
∀ x35 x36 . (... = ... ⟶ False) ⟶ False.