Let x0 of type ο be given.
Apply H0 with
pack_p 0 (λ x1 . False).
Let x1 of type ο be given.
Apply H1 with
λ x2 . lam 0 (λ x3 . 0).
Apply andI with
struct_p (pack_p 0 (λ x2 . False)),
∀ x2 . struct_p x2 ⟶ and (UnaryPredHom (pack_p 0 (λ x3 . False)) x2 ((λ x3 . lam 0 (λ x4 . 0)) x2)) (∀ x3 . UnaryPredHom (pack_p 0 (λ x4 . False)) x2 x3 ⟶ x3 = (λ x4 . lam 0 (λ x5 . 0)) x2) leaving 2 subgoals.
The subproof is completed by applying pack_struct_p_I with
0,
λ x2 . False.
Let x2 of type ι be given.
Apply H2 with
λ x3 . and (UnaryPredHom (pack_p 0 (λ x4 . False)) x3 ((λ x4 . lam 0 (λ x5 . 0)) x3)) (∀ x4 . UnaryPredHom (pack_p 0 (λ x5 . False)) x3 x4 ⟶ x4 = (λ x5 . lam 0 (λ x6 . 0)) x3).
Let x3 of type ι be given.
Let x4 of type ι → ο be given.
Apply andI with
UnaryPredHom (pack_p 0 (λ x5 . False)) (pack_p x3 x4) ((λ x5 . lam 0 (λ x6 . 0)) (pack_p x3 x4)),
∀ x5 . UnaryPredHom (pack_p 0 (λ x6 . False)) (pack_p x3 x4) x5 ⟶ x5 = (λ x6 . lam 0 (λ x7 . 0)) (pack_p x3 x4) leaving 2 subgoals.
Apply unknownprop_63c01b8f599732ba7bc3b48c28c0f10755230e5cc9f0717c7895602d2eaf01d3 with
0,
x3,
λ x5 . False,
x4,
lam 0 (λ x5 . 0),
λ x5 x6 : ο . x6.
Apply andI with
lam 0 (λ x5 . 0) ∈ setexp x3 0,
∀ x5 . x5 ∈ 0 ⟶ (λ x6 . False) x5 ⟶ x4 (ap (lam 0 (λ x6 . 0)) x5) leaving 2 subgoals.
Apply lam_Pi with
0,
λ x5 . x3,
λ x5 . 0.
Let x5 of type ι be given.
Assume H3: x5 ∈ 0.
Apply FalseE with
(λ x6 . 0) x5 ∈ (λ x6 . x3) x5.
Apply EmptyE with
x5.
The subproof is completed by applying H3.
Let x5 of type ι be given.
Assume H3: x5 ∈ 0.
Apply FalseE with
(λ x6 . False) x5 ⟶ x4 (ap (lam 0 (λ x6 . 0)) x5).
Apply EmptyE with
x5.
The subproof is completed by applying H3.
Let x5 of type ι be given.
Apply unknownprop_63c01b8f599732ba7bc3b48c28c0f10755230e5cc9f0717c7895602d2eaf01d3 with
0,
x3,
λ x6 . False,
x4,
x5,
λ x6 x7 : ο . x7 ⟶ x5 = (λ x8 . lam 0 (λ x9 . 0)) (pack_p x3 x4).
Assume H3:
and (x5 ∈ setexp x3 0) (∀ x6 . x6 ∈ 0 ⟶ (λ x7 . False) x6 ⟶ x4 (ap x5 x6)).
Apply H3 with
x5 = (λ x6 . lam 0 (λ x7 . 0)) (pack_p x3 x4).
Assume H4:
x5 ∈ setexp x3 0.
Assume H5: ∀ x6 . ... ⟶ ... ⟶ x4 ....