Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ο be given.
Assume H0: ∀ x1 . (∃ x2 : ι → ι . MetaCat_initial_p struct_p UnaryPredHom struct_id struct_comp x1 x2)x0.
Apply H0 with pack_p 0 (λ x1 . False).
Let x1 of type ο be given.
Assume H1: ∀ x2 : ι → ι . MetaCat_initial_p struct_p UnaryPredHom struct_id struct_comp (pack_p 0 (λ x3 . False)) x2x1.
Apply H1 with λ x2 . lam 0 (λ x3 . 0).
Apply andI with struct_p (pack_p 0 (λ x2 . False)), ∀ x2 . struct_p x2and (UnaryPredHom (pack_p 0 (λ x3 . False)) x2 ((λ x3 . lam 0 (λ x4 . 0)) x2)) (∀ x3 . UnaryPredHom (pack_p 0 (λ x4 . False)) x2 x3x3 = (λ x4 . lam 0 (λ x5 . 0)) x2) leaving 2 subgoals.
The subproof is completed by applying pack_struct_p_I with 0, λ x2 . False.
Let x2 of type ι be given.
Assume H2: struct_p x2.
Apply H2 with λ x3 . and (UnaryPredHom (pack_p 0 (λ x4 . False)) x3 ((λ x4 . lam 0 (λ x5 . 0)) x3)) (∀ x4 . UnaryPredHom (pack_p 0 (λ x5 . False)) x3 x4x4 = (λ x5 . lam 0 (λ x6 . 0)) x3).
Let x3 of type ι be given.
Let x4 of type ιο be given.
Apply andI with UnaryPredHom (pack_p 0 (λ x5 . False)) (pack_p x3 x4) ((λ x5 . lam 0 (λ x6 . 0)) (pack_p x3 x4)), ∀ x5 . UnaryPredHom (pack_p 0 (λ x6 . False)) (pack_p x3 x4) x5x5 = (λ x6 . lam 0 (λ x7 . 0)) (pack_p x3 x4) leaving 2 subgoals.
Apply unknownprop_63c01b8f599732ba7bc3b48c28c0f10755230e5cc9f0717c7895602d2eaf01d3 with 0, x3, λ x5 . False, x4, lam 0 (λ x5 . 0), λ x5 x6 : ο . x6.
Apply andI with lam 0 (λ x5 . 0)setexp x3 0, ∀ x5 . x50(λ x6 . False) x5x4 (ap (lam 0 (λ x6 . 0)) x5) leaving 2 subgoals.
Apply lam_Pi with 0, λ x5 . x3, λ x5 . 0.
Let x5 of type ι be given.
Assume H3: x50.
Apply FalseE with (λ x6 . 0) x5(λ x6 . x3) x5.
Apply EmptyE with x5.
The subproof is completed by applying H3.
Let x5 of type ι be given.
Assume H3: x50.
Apply FalseE with (λ x6 . False) x5x4 (ap (lam 0 (λ x6 . 0)) x5).
Apply EmptyE with x5.
The subproof is completed by applying H3.
Let x5 of type ι be given.
Apply unknownprop_63c01b8f599732ba7bc3b48c28c0f10755230e5cc9f0717c7895602d2eaf01d3 with 0, x3, λ x6 . False, x4, x5, λ x6 x7 : ο . x7x5 = (λ x8 . lam 0 (λ x9 . 0)) (pack_p x3 x4).
Assume H3: and (x5setexp x3 0) (∀ x6 . x60(λ x7 . False) x6x4 (ap x5 x6)).
Apply H3 with x5 = (λ x6 . lam 0 (λ x7 . 0)) (pack_p x3 x4).
Assume H4: x5setexp x3 0.
Assume H5: ∀ x6 . ......x4 ....
...