Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ο be given.
Assume H0: ∀ x1 : ι → ι → ι . (∃ x2 x3 : ι → ι → ι . ∃ x4 : ι → ι → ι → ι → ι → ι . MetaCat_coproduct_constr_p 8b17e.. BinRelnHom struct_id struct_comp x1 x2 x3 x4)x0.
Apply H0 with λ x1 x2 . pack_r 0 (λ x3 x4 . False).
Let x1 of type ο be given.
Assume H1: ∀ x2 : ι → ι → ι . (∃ x3 : ι → ι → ι . ∃ x4 : ι → ι → ι → ι → ι → ι . MetaCat_coproduct_constr_p 8b17e.. BinRelnHom struct_id struct_comp (λ x5 x6 . pack_r 0 (λ x7 x8 . False)) x2 x3 x4)x1.
Apply H1 with λ x2 x3 . 0.
Let x2 of type ο be given.
Assume H2: ∀ x3 : ι → ι → ι . (∃ x4 : ι → ι → ι → ι → ι → ι . MetaCat_coproduct_constr_p 8b17e.. BinRelnHom struct_id struct_comp (λ x5 x6 . pack_r 0 (λ x7 x8 . False)) (λ x5 x6 . 0) x3 x4)x2.
Apply H2 with λ x3 x4 . 0.
Let x3 of type ο be given.
Assume H3: ∀ x4 : ι → ι → ι → ι → ι → ι . MetaCat_coproduct_constr_p 8b17e.. BinRelnHom struct_id struct_comp (λ x5 x6 . pack_r 0 (λ x7 x8 . False)) (λ x5 x6 . 0) (λ x5 x6 . 0) x4x3.
Apply H3 with λ x4 x5 x6 x7 x8 . 0.
Let x4 of type ι be given.
Let x5 of type ι be given.
Assume H4: 8b17e.. x4.
Assume H5: 8b17e.. x5.
Claim L6: ...
...
Apply and6I with 8b17e.. x4, 8b17e.. x5, 8b17e.. (pack_r 0 (λ x6 x7 . False)), BinRelnHom x4 (pack_r 0 (λ x6 x7 . False)) 0, BinRelnHom x5 (pack_r 0 (λ x6 x7 . False)) 0, ∀ x6 . 8b17e.. x6∀ x7 x8 . BinRelnHom x4 x6 x7BinRelnHom x5 x6 x8and (and (and (BinRelnHom (pack_r 0 (λ x9 x10 . False)) x6 0) (struct_comp x4 (pack_r 0 (λ x9 x10 . False)) x6 0 0 = x7)) (struct_comp x5 (pack_r 0 (λ x9 x10 . False)) x6 0 0 = x8)) (∀ x9 . BinRelnHom (pack_r 0 (λ x10 x11 . False)) x6 x9struct_comp x4 (pack_r 0 (λ x10 x11 . False)) x6 x9 0 = x7struct_comp x5 (pack_r 0 (λ x10 x11 . False)) x6 x9 0 = x8x9 = 0) leaving 6 subgoals.
The subproof is completed by applying H4.
The subproof is completed by applying H5.
The subproof is completed by applying L6.
Apply unknownprop_5d29dee76dbe631c3e61c3da6506dfaf505efc5a4aa6bec582f8fe5c402e18fa with x4, pack_r 0 (λ x6 x7 . False) leaving 2 subgoals.
The subproof is completed by applying H4.
The subproof is completed by applying L6.
Apply unknownprop_5d29dee76dbe631c3e61c3da6506dfaf505efc5a4aa6bec582f8fe5c402e18fa with x5, pack_r 0 (λ x6 x7 . False) leaving 2 subgoals.
The subproof is completed by applying H5.
The subproof is completed by applying L6.
Let x6 of type ι be given.
Assume H7: 8b17e.. x6.
Let x7 of type ι be given.
Let x8 of type ι be given.
Assume H8: BinRelnHom x4 x6 x7.
Assume H9: BinRelnHom x5 x6 x8.
Claim L10: ...
...
Claim L11: ...
...
Apply and4I with BinRelnHom (pack_r 0 (λ x9 x10 . False)) x6 0, struct_comp x4 (pack_r 0 (λ x9 x10 . False)) x6 0 0 = x7, struct_comp x5 (pack_r 0 (λ x9 x10 . False)) x6 0 0 = x8, ∀ x9 . ...struct_comp x4 (pack_r 0 ...) ... ... 0 = ...struct_comp x5 (pack_r 0 (λ x10 x11 . False)) x6 x9 0 = x8x9 = 0 leaving 4 subgoals.
...
...
...
...