Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Assume H0: nat_p x0.
Apply nat_ind with λ x1 . equip (exp_nat x0 x1) (setexp x0 x1) leaving 2 subgoals.
Apply unknownprop_e320081fa46c313032b82ae65d08f162063eec597356adc2ef96e4883b8d3302 with x0, λ x1 x2 . equip x2 (setexp x0 0).
Apply equip_sym with setexp x0 0, 1.
The subproof is completed by applying unknownprop_62fa75c17c3e844b21d255650e97642a49307dfdd0dcd86f1d15a71f14f047cb with x0.
Let x1 of type ι be given.
Assume H1: nat_p x1.
Assume H2: equip (exp_nat x0 x1) (setexp x0 x1).
Apply equip_sym with exp_nat x0 x1, setexp x0 x1, equip (exp_nat x0 (ordsucc x1)) (setexp x0 (ordsucc x1)) leaving 2 subgoals.
The subproof is completed by applying H2.
Let x2 of type ιι be given.
Assume H3: bij (setexp x0 x1) (exp_nat x0 x1) x2.
Apply H3 with equip (exp_nat x0 (ordsucc x1)) (setexp x0 (ordsucc x1)).
Assume H4: and (∀ x3 . x3setexp x0 x1x2 x3exp_nat x0 x1) (∀ x3 . x3setexp x0 x1∀ x4 . x4setexp x0 x1x2 x3 = x2 x4x3 = x4).
Apply H4 with (∀ x3 . x3exp_nat x0 x1∃ x4 . and (x4setexp x0 x1) (x2 x4 = x3))equip (exp_nat x0 (ordsucc x1)) (setexp x0 (ordsucc x1)).
Assume H5: ∀ x3 . x3setexp x0 x1x2 x3exp_nat x0 x1.
Assume H6: ∀ x3 . x3setexp x0 x1∀ x4 . x4setexp x0 x1x2 x3 = x2 x4x3 = x4.
Assume H7: ∀ x3 . x3exp_nat x0 x1∃ x4 . and (x4setexp x0 x1) (x2 x4 = x3).
Apply unknownprop_e9c4cec7fb327dcb17b88acdaf76daee024e49fa71834a13065f86e12e958609 with x0, x1, λ x3 x4 . equip x4 (setexp x0 (ordsucc x1)) leaving 2 subgoals.
The subproof is completed by applying H1.
Apply equip_tra with mul_nat x0 (exp_nat x0 x1), setprod x0 (exp_nat x0 x1), setexp x0 (ordsucc x1) leaving 2 subgoals.
Apply unknownprop_b67c3f99b7dcb350283e28e0205622aac5c4480ca587d55b1fc9b439a7a164e1 with x0, exp_nat x0 x1, x0, exp_nat x0 x1 leaving 4 subgoals.
The subproof is completed by applying H0.
Apply unknownprop_1b73e01bc234ba0e318bc9baf16604d4f0fc12bea57885439d70438de4eb7174 with x0, x1 leaving 2 subgoals.
The subproof is completed by applying H0.
The subproof is completed by applying H1.
The subproof is completed by applying equip_ref with x0.
The subproof is completed by applying equip_ref with exp_nat x0 x1.
Apply equip_sym with setexp x0 (ordsucc x1), setprod x0 (exp_nat x0 x1).
Let x3 of type ο be given.
Assume H8: ∀ x4 : ι → ι . bij (setexp x0 (ordsucc x1)) (setprod x0 (exp_nat x0 x1)) x4x3.
Apply H8 with λ x4 . lam 2 (λ x5 . If_i (x5 = 0) (ap x4 x1) (x2 (lam x1 (λ x6 . ap x4 x6)))).
Apply bijI with setexp x0 (ordsucc x1), setprod x0 (exp_nat x0 x1), λ x4 . ... leaving 3 subgoals.
...
...
...