Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Assume H0: prim1 x1 (1216a.. (b5c9f.. x0 x0) (λ x2 . bij x0 x0 (λ x3 . f482f.. x2 x3))).
Apply unknownprop_38ee93c68aca60318bbeaa48caeaf22e4a66dbcceb33f1720f11297f26ed11bf with x0, x1, explicit_Group_inverse (1216a.. (b5c9f.. x0 x0) (λ x2 . bij x0 x0 (λ x3 . f482f.. x2 x3))) (λ x2 x3 . 0fc90.. x0 (λ x4 . f482f.. x3 (f482f.. x2 x4))) x1 = 0fc90.. x0 (λ x2 . inv x0 (λ x3 . f482f.. x1 x3) x2) leaving 2 subgoals.
The subproof is completed by applying H0.
Assume H1: and (prim1 (0fc90.. x0 (inv x0 (f482f.. x1))) (1216a.. (b5c9f.. x0 x0) (λ x2 . bij x0 x0 (f482f.. x2)))) (0fc90.. x0 (λ x2 . f482f.. (0fc90.. x0 (inv x0 (f482f.. x1))) (f482f.. x1 x2)) = 0fc90.. x0 (λ x2 . x2)).
Assume H2: 0fc90.. x0 (λ x2 . f482f.. x1 (f482f.. (0fc90.. x0 (inv x0 (f482f.. x1))) x2)) = 0fc90.. x0 (λ x2 . x2).
Apply H1 with explicit_Group_inverse (1216a.. (b5c9f.. x0 x0) (λ x2 . bij x0 x0 (λ x3 . f482f.. x2 x3))) (λ x2 x3 . 0fc90.. x0 (λ x4 . f482f.. x3 (f482f.. x2 x4))) x1 = 0fc90.. x0 (λ x2 . inv x0 (λ x3 . f482f.. x1 x3) x2).
Assume H3: prim1 (0fc90.. x0 (inv x0 (f482f.. x1))) (1216a.. (b5c9f.. x0 x0) (λ x2 . bij x0 x0 (f482f.. x2))).
Assume H4: 0fc90.. x0 (λ x2 . f482f.. (0fc90.. x0 (inv x0 (f482f.. x1))) (f482f.. x1 x2)) = 0fc90.. x0 (λ x2 . x2).
Apply explicit_Group_lcancel with 1216a.. (b5c9f.. x0 x0) (λ x2 . bij x0 x0 (λ x3 . f482f.. x2 x3)), λ x2 x3 . 0fc90.. x0 (λ x4 . f482f.. x3 (f482f.. x2 x4)), x1, explicit_Group_inverse (1216a.. (b5c9f.. x0 x0) (λ x2 . bij x0 x0 (λ x3 . f482f.. x2 x3))) (λ x2 x3 . 0fc90.. x0 (λ x4 . f482f.. x3 (f482f.. x2 x4))) x1, 0fc90.. x0 (λ x2 . inv x0 (λ x3 . f482f.. x1 x3) x2) leaving 5 subgoals.
The subproof is completed by applying unknownprop_bc372826b7f0da52f3a8a3ea86862b41fc91267615627787d3fb4a389b8c72dc with x0.
The subproof is completed by applying H0.
Apply explicit_Group_inverse_in with 1216a.. (b5c9f.. x0 x0) (λ x2 . bij x0 x0 (λ x3 . f482f.. x2 x3)), λ x2 x3 . 0fc90.. x0 (λ x4 . f482f.. x3 (f482f.. x2 x4)), x1 leaving 2 subgoals.
The subproof is completed by applying unknownprop_bc372826b7f0da52f3a8a3ea86862b41fc91267615627787d3fb4a389b8c72dc with x0.
...
...
...