Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ι be given.
Claim L3: ∀ x6 : ι → ο . x6 y5 ⟶ x6 y4
Let x6 of type ι → ο be given.
set y7 to be λ x7 . x6
Apply unknownprop_3341a621e79d3f9f700c2a0db134f89ed08835f1d46a262ace9da8089fc62fd8 with
x3,
y4,
y5,
λ x8 x9 . y7 (bc82c.. x2 x8) (bc82c.. x2 x9) leaving 4 subgoals.
The subproof is completed by applying H0.
The subproof is completed by applying H1.
The subproof is completed by applying H2.
The subproof is completed by applying H3.
Let x6 of type ι → ι → ο be given.
Apply L3 with
λ x7 . x6 x7 y5 ⟶ x6 y5 x7.
Assume H4: x6 y5 y5.
The subproof is completed by applying H4.