Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι(ιιο) → (ιιο) → (ιο) → (ιο) → ο be given.
Let x1 of type ι be given.
Let x2 of type ιιο be given.
Let x3 of type ιιο be given.
Let x4 of type ιο be given.
Let x5 of type ιο be given.
Assume H0: ∀ x6 : ι → ι → ο . (∀ x7 . prim1 x7 x1∀ x8 . prim1 x8 x1iff (x2 x7 x8) (x6 x7 x8))∀ x7 : ι → ι → ο . (∀ x8 . prim1 x8 x1∀ x9 . prim1 x9 x1iff (x3 x8 x9) (x7 x8 x9))∀ x8 : ι → ο . (∀ x9 . prim1 x9 x1iff (x4 x9) (x8 x9))∀ x9 : ι → ο . (∀ x10 . prim1 x10 x1iff (x5 x10) (x9 x10))x0 x1 x6 x7 x8 x9 = x0 x1 x2 x3 x4 x5.
Apply unknownprop_e14f7b429713336ceac3b91fcc55de4fd9e42dd95788cd866fa2797941b492ab with x1, x2, x3, x4, x5, λ x6 x7 . x0 x6 (2b2e3.. (f482f.. (918ae.. x1 x2 x3 x4 x5) (4ae4a.. 4a7ef..))) (2b2e3.. (f482f.. (918ae.. x1 x2 x3 x4 x5) (4ae4a.. (4ae4a.. 4a7ef..)))) (decode_p (f482f.. (918ae.. x1 x2 x3 x4 x5) (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) (decode_p (f482f.. (918ae.. x1 x2 x3 x4 x5) (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))))) = x0 x1 x2 x3 x4 x5.
Apply H0 with 2b2e3.. (f482f.. (918ae.. x1 x2 x3 x4 x5) (4ae4a.. 4a7ef..)), 2b2e3.. (f482f.. (918ae.. x1 x2 x3 x4 x5) (4ae4a.. (4ae4a.. 4a7ef..))), decode_p (f482f.. (918ae.. x1 x2 x3 x4 x5) (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))), decode_p (f482f.. (918ae.. x1 x2 x3 x4 x5) (4ae4a.. (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..))))) leaving 4 subgoals.
Let x6 of type ι be given.
Assume H1: prim1 x6 x1.
Let x7 of type ι be given.
Assume H2: prim1 x7 x1.
Apply unknownprop_cd7491bb8277007bfb56f5d7e42be1c59cf6fcef57810a06095df2bae5eb9892 with x1, x2, x3, x4, x5, x6, x7, λ x8 x9 : ο . iff (x2 x6 x7) x8 leaving 3 subgoals.
The subproof is completed by applying H1.
The subproof is completed by applying H2.
The subproof is completed by applying iff_refl with x2 x6 x7.
Let x6 of type ι be given.
Assume H1: prim1 x6 x1.
Let x7 of type ι be given.
Assume H2: prim1 x7 x1.
Apply unknownprop_6640545361000e8f24742fa000eaa7c62a3116e5b9874bad2064ad6e701740ae with x1, x2, x3, x4, x5, x6, x7, λ x8 x9 : ο . iff (x3 x6 x7) x8 leaving 3 subgoals.
The subproof is completed by applying H1.
The subproof is completed by applying H2.
The subproof is completed by applying iff_refl with x3 x6 x7.
Let x6 of type ι be given.
Assume H1: prim1 x6 x1.
Apply unknownprop_4891b05184c55b25fe37e0d500db5a0f66499846c5ede105e100f75de8266e46 with x1, x2, x3, x4, x5, x6, λ x7 x8 : ο . iff (x4 x6) x7 leaving 2 subgoals.
The subproof is completed by applying H1.
The subproof is completed by applying iff_refl with x4 x6.
Let x6 of type ι be given.
Assume H1: prim1 x6 x1.
Apply unknownprop_29343dedcc828a3fa4de9834f1f575dedf93c15d1f3513126d29c19faad30238 with x1, x2, x3, x4, x5, x6, λ x7 x8 : ο . iff (x5 x6) x7 leaving 2 subgoals.
The subproof is completed by applying H1.
The subproof is completed by applying iff_refl with x5 x6.