Let x0 of type ι be given.
Let x1 of type ι → ο be given.
Let x2 of type ι → ο be given.
Let x3 of type ι → ι → ι be given.
Let x4 of type ι be given.
Let x5 of type ι be given.
Let x6 of type ι be given.
Let x7 of type ι be given.
Let x8 of type ι → ο be given.
Let x9 of type ι → ο be given.
Let x10 of type ι → ο be given.
Let x11 of type ι → ι be given.
Let x12 of type ι be given.
Let x13 of type ι → ι be given.
Let x14 of type ι be given.
Let x15 of type ι → ο be given.
Let x16 of type ι → ο be given.
Let x17 of type ι be given.
Let x18 of type ι be given.
Let x19 of type ι be given.
Let x20 of type ι be given.
Let x21 of type ι be given.
Let x22 of type ι be given.
Let x23 of type ι be given.
Let x24 of type ι be given.
Let x25 of type ι be given.
Let x26 of type ι be given.
Let x27 of type ι be given.
Let x28 of type ι → ο be given.
Let x29 of type ι → ο be given.
Let x30 of type ι be given.
Let x31 of type ι be given.
Let x32 of type ι be given.
Let x33 of type ι → ι → ο be given.
Let x34 of type ι → ι → ι be given.
Let x35 of type ι → ο be given.
Let x36 of type ι → ο be given.
Let x37 of type ι be given.
Let x38 of type ι → ι → ο be given.
Let x39 of type ι → ι → ι be given.
Let x40 of type ι → ο be given.
Let x41 of type ι → ι → ι → ο be given.
Let x42 of type ι → ι → ο be given.
Let x43 of type ι be given.
Let x44 of type ι be given.
Let x45 of type ι → ι be given.
Assume H5:
(x45 (x45 x44) = x44 ⟶ False) ⟶ False.
Assume H6:
(x45 x44 = x45 x44 ⟶ False) ⟶ False.
Assume H7:
(x42 x44 x43 ⟶ False) ⟶ False.
Assume H8:
(x42 x44 x0 ⟶ False) ⟶ False.
Assume H9:
(x41 x44 x43 x0 ⟶ False) ⟶ False.
Assume H11:
x40 x44 ⟶ False.
Assume H12:
∀ x46 x47 . x2 x47 ⟶ x2 x46 ⟶ (x3 (x45 x47) (x45 x46) = x3 x46 x47 ⟶ False) ⟶ False.
Assume H13:
∀ x46 x47 . x2 x47 ⟶ x2 x46 ⟶ (x39 (x45 x47) (x45 x46) = x45 (x39 x47 x46) ⟶ False) ⟶ False.
Assume H14:
∀ x46 x47 x48 . x2 x48 ⟶ x2 x46 ⟶ x2 x47 ⟶ (x39 (x39 x48 x46) x47 = x39 x48 (x39 x46 x47) ⟶ False) ⟶ False.
Assume H15:
∀ x46 x47 . x2 x47 ⟶ x2 x46 ⟶ (x39 x47 (x45 x46) = x3 x47 x46 ⟶ False) ⟶ False.
Assume H17:
∀ x46 x47 . x2 x47 ⟶ x2 x46 ⟶ (x2 (x3 x47 x46) ⟶ False) ⟶ False.
Assume H18:
∀ x46 x47 . x2 x47 ⟶ x2 x46 ⟶ (x2 (x39 x47 x46) ⟶ False) ⟶ False.
Assume H19:
∀ x46 . x2 x46 ⟶ (x2 (x45 x46) ⟶ False) ⟶ False.
Assume H20:
∀ x46 . x2 x46 ⟶ (x45 (x45 x46) = x46 ⟶ False) ⟶ False.
Assume H21:
∀ x46 x47 . x2 x47 ⟶ x2 x46 ⟶ (x39 x47 x46 = x39 x46 x47 ⟶ False) ⟶ False.
Assume H22:
∀ x46 x47 . x40 x47 ⟶ (x47 = x46 ⟶ False) ⟶ x40 x46 ⟶ False.
Assume H23:
∀ x46 x47 . x38 x46 x47 ⟶ x40 x47 ⟶ False.
Assume H24:
∀ x46 . x40 x46 ⟶ (x46 = x5 ⟶ False) ⟶ False.
Assume H25:
∀ x46 x47 . x42 x46 x47 ⟶ (x40 x47 ⟶ False) ⟶ (x38 x46 x47 ⟶ False) ⟶ False.
Assume H27:
x40 x6 ⟶ False.
Assume H28:
x40 x7 ⟶ False.
Assume H29:
(x40 x37 ⟶ False) ⟶ False.
Assume H30:
∀ x46 . ... ⟶ ... ⟶ (x2 (x45 x46) ⟶ False) ⟶ False.