Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι) be given.
Let x1 of type ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι) be given.
Let x2 of type ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι) be given.
Let x3 of type ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι) be given.
Let x4 of type ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι) be given.
Let x5 of type ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι) be given.
Let x6 of type ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι) be given.
Let x7 of type ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι) be given.
Let x8 of type ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι) be given.
Let x9 of type ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι) be given.
Assume H0: ChurchNum_3ary_proj_p x0.
Assume H1: ChurchNum_8ary_proj_p x5.
Assume H4: ChurchNum_3ary_proj_p x2.
Assume H5: ChurchNum_3ary_proj_p x3.
Assume H6: ChurchNum_3ary_proj_p x4.
Assume H7: ChurchNum_8ary_proj_p x7.
Assume H8: ChurchNum_8ary_proj_p x8.
Assume H9: ChurchNum_8ary_proj_p x9.
Assume H10: TwoRamseyGraph_4_5_24_ChurchNums_3x8 x0 x5 x2 x7 = λ x10 x11 . x11.
Assume H11: TwoRamseyGraph_4_5_24_ChurchNums_3x8 x0 x5 x3 x8 = λ x10 x11 . x11.
Assume H12: TwoRamseyGraph_4_5_24_ChurchNums_3x8 x0 x5 x4 x9 = λ x10 x11 . x11.
Assume H13: TwoRamseyGraph_4_5_24_ChurchNums_3x8 x1 x6 x2 x7 = λ x10 x11 . x11.
Assume H14: TwoRamseyGraph_4_5_24_ChurchNums_3x8 x1 x6 x3 x8 = λ x10 x11 . x11.
Assume H15: TwoRamseyGraph_4_5_24_ChurchNums_3x8 x1 x6 x4 x9 = λ x10 x11 . x11.
Assume H16: TwoRamseyGraph_4_5_24_ChurchNums_3x8 x2 x7 x3 x8 = λ x10 x11 . x11.
Assume H17: TwoRamseyGraph_4_5_24_ChurchNums_3x8 x2 x7 x4 x9 = λ x10 x11 . x11.
Assume H18: TwoRamseyGraph_4_5_24_ChurchNums_3x8 x3 x8 x4 x9 = λ x10 x11 . x11.
Apply unknownprop_9cee29baa93f11e013d65cf0e4ad7df4638b3ee96d47be7bf7654b5b77cac08d with x0, x5, False leaving 3 subgoals.
The subproof is completed by applying H0.
The subproof is completed by applying H1.
Let x10 of type (((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)) → (((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι) be given.
Let x11 of type (((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)) → (((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι) be given.
Let x12 of type (((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι) be given.
Let x13 of type (((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι)) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → ((ιι) → ιι) → CN (ιι) be given.
Assume H19: ∀ x14 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x15 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_3ary_proj_p x14ChurchNum_8ary_proj_p x15ChurchNum_3ary_proj_p (x10 x15 x14).
Assume H20: ∀ x14 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x15 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_3ary_proj_p x14ChurchNum_8ary_proj_p x15ChurchNum_3ary_proj_p (x11 x15 x14).
Assume H21: ∀ x14 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x15 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_8ary_proj_p x15x10 x15 (x11 x15 x14) = x14.
Assume H22: ∀ x14 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x15 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_8ary_proj_p x15x11 x15 (x10 x15 x14) = x14.
Assume H23: ∀ x14 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_8ary_proj_p x14ChurchNum_8ary_proj_p (x12 x14).
Assume H24: ∀ x14 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_8ary_proj_p x14ChurchNum_8ary_proj_p (x13 x14).
Assume H25: ∀ x14 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . x12 (x13 x14) = x14.
Assume H26: ∀ x14 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . x13 (x12 x14) = x14.
Assume H27: ∀ x14 x15 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x16 x17 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_3ary_proj_p x14ChurchNum_3ary_proj_p x15ChurchNum_8ary_proj_p x16ChurchNum_8ary_proj_p x17TwoRamseyGraph_4_5_24_ChurchNums_3x8 x14 x16 x15 x17 = TwoRamseyGraph_4_5_24_ChurchNums_3x8 (x10 x16 x14) (x12 x16) (x10 x17 x15) (x12 x17).
Assume H28: x10 x5 x0 = λ x14 x15 x16 : (ι → ι)ι → ι . x14.
Assume H29: x12 x5 = λ x14 x15 x16 x17 x18 x19 x20 x21 : (ι → ι)ι → ι . x14.
Assume H30: ∀ x14 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . x12 (ChurchNums_8_perm_3_4_5_6_7_0_1_2 x14) = ChurchNums_8_perm_3_4_5_6_7_0_1_2 (x12 x14).
Assume H31: ∀ x14 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ∀ x15 : ((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)((ι → ι)ι → ι)(ι → ι)ι → ι . ChurchNum_8ary_proj_p x15x10 (ChurchNums_8_perm_3_4_5_6_7_0_1_2 x15) (ChurchNums_8x3_to_3_lt5_id_ge5_rot2 x15 x14) = ChurchNums_8x3_to_3_lt5_id_ge5_rot2 (x12 x15) (x10 x15 x14).
Claim L32: ...
...
Claim L33: ...
...
Claim L34: ...
...
Claim L35: ...
...
Apply unknownprop_a5077f97daf85af0c0d4479eb111f3aab1bedc27313b4ddb24ec4a247a2c6f6c with x10 x7 x2, x10 x8 x3, x10 x9 x4, ..., ..., ... leaving 15 subgoals.
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...