Let x0 of type ι → ι → ο be given.
Let x1 of type ι → ο be given.
Let x2 of type ι → ι → ι be given.
Let x3 of type ι be given.
Let x4 of type ι be given.
Let x5 of type ι → ι → ο be given.
Let x6 of type ι → ι → ι be given.
Let x7 of type ι be given.
Let x8 of type ι be given.
Let x9 of type ι → ι → ι → ο be given.
Let x10 of type ι → ο be given.
Let x11 of type ι be given.
Let x12 of type ι be given.
Let x13 of type ι be given.
Let x14 of type ι be given.
Let x15 of type ι be given.
Let x16 of type ι be given.
Let x17 of type ι → ο be given.
Let x18 of type ι be given.
Let x19 of type ι be given.
Let x20 of type ι → ι be given.
Let x21 of type ι → ο be given.
Let x22 of type ι → ο be given.
Let x23 of type ι be given.
Let x24 of type ι be given.
Let x25 of type ι → ι → ι be given.
Let x26 of type ι be given.
Let x27 of type ι be given.
Let x28 of type ι be given.
Let x29 of type ι → ο be given.
Let x30 of type ι be given.
Let x31 of type ι → ο be given.
Let x32 of type ι be given.
Let x33 of type ι be given.
Let x34 of type ι → ο be given.
Let x35 of type ι be given.
Let x36 of type ι → ο be given.
Let x37 of type ι be given.
Let x38 of type ι → ο be given.
Let x39 of type ι → ο be given.
Let x40 of type ι be given.
Let x41 of type ι → ι be given.
Let x42 of type ι → ι → ο be given.
Let x43 of type ι → ι be given.
Let x44 of type ι be given.
Let x45 of type ι → ο be given.
Assume H5:
∀ x46 x47 . x45 x47 ⟶ (x47 = x46 ⟶ False) ⟶ x45 x46 ⟶ False.
Assume H6:
∀ x46 x47 . x0 x46 x47 ⟶ x45 x47 ⟶ False.
Assume H7:
∀ x46 . x45 x46 ⟶ (x46 = x44 ⟶ False) ⟶ False.
Assume H8:
∀ x46 . x1 x46 ⟶ (x2 x46 x3 = x46 ⟶ False) ⟶ False.
Assume H9:
∀ x46 x47 x48 . x0 x46 x47 ⟶ x42 x47 (x43 x48) ⟶ x45 x48 ⟶ False.
Assume H10:
∀ x46 . x1 x46 ⟶ (x2 x4 x46 = x4 ⟶ False) ⟶ False.
Assume H11:
∀ x46 x47 x48 . x0 x47 x48 ⟶ x42 x48 (x43 x46) ⟶ (x42 x47 x46 ⟶ False) ⟶ False.
Assume H12:
∀ x46 x47 . x5 x47 x46 ⟶ (x42 x47 (x43 x46) ⟶ False) ⟶ False.
Assume H13:
∀ x46 x47 . x42 x47 (x43 x46) ⟶ (x5 x47 x46 ⟶ False) ⟶ False.
Assume H14:
∀ x46 . x1 x46 ⟶ (x6 x3 x46 = x46 ⟶ False) ⟶ False.
Assume H15:
∀ x46 x47 . x42 x46 x47 ⟶ (x45 x47 ⟶ False) ⟶ (x0 x46 x47 ⟶ False) ⟶ False.
Assume H16:
∀ x46 . x1 x46 ⟶ (x6 x46 x4 = x4 ⟶ False) ⟶ False.
Assume H17:
∀ x46 x47 . x0 x47 x46 ⟶ (x42 x47 x46 ⟶ False) ⟶ False.
Assume H18:
(x42 x44 x7 ⟶ False) ⟶ False.
Assume H19:
∀ x46 x47 x48 . x1 x48 ⟶ x1 x46 ⟶ x1 x47 ⟶ (x6 (x6 x48 x46) x47 = x6 x48 (x6 x46 x47) ⟶ False) ⟶ False.
Assume H20:
∀ x46 x47 x48 . x1 x48 ⟶ x1 x46 ⟶ x1 x47 ⟶ (x6 x48 (x2 x46 x47) = x2 (x6 x48 x46) x47 ⟶ False) ⟶ False.
Assume H21:
∀ x46 . x1 x46 ⟶ (x2 x3 x46 = x41 x46 ⟶ False) ⟶ False.
Assume H22:
(x42 x3 x8 ⟶ False) ⟶ False.
Assume H23:
(x42 x3 x40 ⟶ False) ⟶ False.
Assume H24:
(x9 x3 x8 x40 ⟶ False) ⟶ False.
Assume H26:
x45 x3 ⟶ False.
Assume H27:
∀ x46 x47 . ... ⟶ x1 ... ⟶ (x6 x47 (x41 x46) = x2 x47 x46 ⟶ False) ⟶ False.