pf |
---|
Let x0 of type ο be given.
Apply H0 with λ x1 . pack_r x1 (λ x2 x3 . False).
Let x1 of type ο be given.
Apply H1 with λ x2 x3 x4 . x4.
Let x2 of type ο be given.
Apply H2 with λ x3 . lam_id x3.
Let x3 of type ο be given.
Apply H3 with λ x4 . lam_id (ap x4 0).
Apply unknownprop_712520f713b96d5afd10321cea9a3c978868fc53aa35a29461e902d5b5a4ba79 with λ x4 . True, HomSet, λ x4 . lam_id x4, λ x4 x5 x6 x7 x8 . lam_comp x4 x7 x8, IrreflexiveSymmetricReln, BinRelnHom, struct_id, struct_comp, λ x4 . pack_r x4 (λ x5 x6 . False), λ x4 x5 x6 . x6, λ x4 . ap x4 0, λ x4 x5 x6 . x6, λ x4 . lam_id x4, λ x4 . lam_id (ap x4 0) leaving 5 subgoals.
Apply unknownprop_3d05796578cdc17ebd2096167db48ecef934256d250d1637eb5dd67225cdfe05 with λ x4 . True, HomSet, λ x4 . lam_id x4, λ x4 x5 x6 x7 x8 . lam_comp x4 x7 x8, IrreflexiveSymmetricReln, BinRelnHom, struct_id, struct_comp, λ x4 . pack_r x4 (λ x5 x6 . False), λ x4 x5 x6 . x6 leaving 3 subgoals.
The subproof is completed by applying unknownprop_dcf5739aa5fe0adc626fd983737b233fe68652dff14c53b3d75823dcf2542d41.
The subproof is completed by applying unknownprop_53ea818e2021d87ac705f8683274896fc426e94dc27b29259138e0d21bd2ebcf.
Apply unknownprop_795e291855a044d4d636c961caa1600704603cc02e33a7b37aa66e8d7f6512db with λ x4 . True, HomSet, λ x4 . lam_id x4, λ x4 x5 x6 x7 x8 . lam_comp x4 x7 x8, IrreflexiveSymmetricReln, BinRelnHom, struct_id, struct_comp, λ x4 . pack_r x4 (λ x5 x6 . False), λ x4 x5 x6 . x6 leaving 4 subgoals.
Let x4 of type ι be given.
Assume H7: (λ x5 . True) x4.
Apply unknownprop_d442b731cc8a623579f119dd4140f334acbb8f35c49c35a487654154f8239ef6 with x4, λ x5 x6 . False leaving 2 subgoals.
Let x5 of type ι be given.
Assume H8: x5 ∈ x4.
The subproof is completed by applying H9.
Let x5 of type ι be given.
Assume H8: x5 ∈ x4.
Let x6 of type ι be given.
Assume H9: x6 ∈ x4.
Assume H10: (λ x7 x8 . False) x5 x6.
The subproof is completed by applying H10.
Let x4 of type ι be given.
Let x5 of type ι be given.
Let x6 of type ι be given.
Assume H7: (λ x7 . True) x4.
■
|
|