Let x0 of type ι → ι → ο be given.
Let x1 of type ι → ι → ο be given.
Let x2 of type ι → ο be given.
Let x3 of type ι → ι → ι be given.
Let x4 of type ι → ι be given.
Let x5 of type ι → ι → ο be given.
Let x6 of type ι → ι → ι be given.
Let x7 of type ι → ο be given.
Let x8 of type ι be given.
Let x9 of type ι be given.
Let x10 of type ι → ι be given.
Let x11 of type ι be given.
Let x12 of type ι → ι → ι → ι be given.
Let x13 of type ι → ι → ι be given.
Let x14 of type ι → ι → ι be given.
Let x15 of type ι → ι → ι be given.
Let x16 of type ι → ι → ι be given.
Let x17 of type ι → ο be given.
Let x18 of type ι be given.
Let x19 of type ι → ι → ι → ι be given.
Let x20 of type ι → ι → ι be given.
Let x21 of type ι → ι → ι be given.
Let x22 of type ι → ι be given.
Let x23 of type ι → ι → ι be given.
Let x24 of type ι be given.
Let x25 of type ι be given.
Let x26 of type ι → ι → ο be given.
Let x27 of type ι → ι be given.
Let x28 of type ι → ι be given.
Let x29 of type ι → ι → ι be given.
Let x30 of type ι be given.
Let x31 of type ι → ο be given.
Assume H5:
∀ x32 x33 . x31 x33 ⟶ (x33 = x32 ⟶ False) ⟶ x31 x32 ⟶ False.
Assume H6:
∀ x32 x33 . x0 x32 x33 ⟶ x31 x33 ⟶ False.
Assume H7:
∀ x32 . x31 x32 ⟶ (x32 = x30 ⟶ False) ⟶ False.
Assume H8:
∀ x32 x33 . x1 x32 x33 ⟶ (x31 x33 ⟶ False) ⟶ (x0 x32 x33 ⟶ False) ⟶ False.
Assume H9:
∀ x32 . (x29 x32 x30 = x30 ⟶ False) ⟶ False.
Assume H10:
∀ x32 x33 x34 . x2 x34 ⟶ x0 (x3 x32 x33) (x4 x34) ⟶ (x32 = x33 ⟶ False) ⟶ False.
Assume H11:
∀ x32 x33 x34 . x2 x34 ⟶ x0 (x3 x32 x33) (x4 x34) ⟶ (x0 x32 (x28 (x4 x34)) ⟶ False) ⟶ False.
Assume H12:
∀ x32 x33 . x0 x33 x32 ⟶ (x1 x33 x32 ⟶ False) ⟶ False.
Assume H13:
∀ x32 . (x28 (x27 x32) = x32 ⟶ False) ⟶ False.
Assume H14:
∀ x32 x33 . (x5 (x6 x32 x33) x32 ⟶ False) ⟶ False.
Assume H15:
∀ x32 x33 . (x26 (x6 x33 x32) x32 ⟶ False) ⟶ False.
Assume H16:
∀ x32 x33 . (x2 (x6 x32 x33) ⟶ False) ⟶ False.
Assume H17:
x31 x25 ⟶ False.
Assume H22:
x31 x24 ⟶ False.
Assume H23:
∀ x32 . (x29 x32 x32 = x32 ⟶ False) ⟶ False.
Assume H24:
∀ x32 . (x31 x32 ⟶ False) ⟶ x2 x32 ⟶ x31 (x28 x32) ⟶ False.
Assume H25:
∀ x32 x33 x34 x35 . (x2 (x23 (x3 x33 x32) (x3 x35 x34)) ⟶ False) ⟶ False.
Assume H26:
∀ x32 x33 . (x2 (x10 (x3 x33 x32)) ⟶ False) ⟶ False.
Assume H27:
∀ x32 x33 . x31 (x23 x32 x33) ⟶ False.
Assume H28:
∀ x32 . x31 (x10 x32) ⟶ False.
Assume H29:
∀ x32 . (x5 (x27 x32) x32 ⟶ False) ⟶ False.
Assume H30:
∀ x32 . (x26 (x27 x32) x32 ⟶ False) ⟶ False.
Assume H31:
∀ x32 . (x2 (x27 x32) ⟶ False) ⟶ False.
Assume H32:
(x31 x30 ⟶ False) ⟶ False.
Assume H33:
∀ x32 x33 . x2 x33 ⟶ (x2 (x29 x33 x32) ⟶ False) ⟶ False.
Assume H34:
∀ x32 . ... ⟶ (x31 (x28 ...) ⟶ False) ⟶ False.