Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ι be given.
Assume H0: nat_p x2.
Assume H1: nat_p x3.
Claim L2: ...
...
Claim L3: ...
...
Assume H4: TwoRamseyProp_atleastp (ordsucc x0) x1 (ordsucc x2).
Assume H5: TwoRamseyProp_atleastp x0 (ordsucc x1) (ordsucc x3).
Let x4 of type ιιο be given.
Assume H6: ∀ x5 x6 . x4 x5 x6x4 x6 x5.
Claim L7: ...
...
Claim L8: ...
...
Apply unknownprop_e15eccd5f8a3702936e1124d59891ca5d635ffe75b915541be475fc6fad587bd with x2, x3, {x5 ∈ ordsucc (add_nat x2 x3)|not (x4 x5 (ordsucc (add_nat x2 x3)))}, {x5 ∈ ordsucc (add_nat x2 x3)|x4 x5 (ordsucc (add_nat x2 x3))}, or (∃ x5 . and (x5ordsucc (ordsucc (add_nat x2 x3))) (and (atleastp (ordsucc x0) x5) (∀ x6 . x6x5∀ x7 . x7x5(x6 = x7∀ x8 : ο . x8)x4 x6 x7))) (∃ x5 . and (x5ordsucc (ordsucc (add_nat x2 x3))) (and (atleastp (ordsucc x1) x5) (∀ x6 . x6x5∀ x7 . x7x5(x6 = x7∀ x8 : ο . x8)not (x4 x6 x7)))) leaving 5 subgoals.
The subproof is completed by applying H0.
The subproof is completed by applying H1.
The subproof is completed by applying L8.
Assume H9: atleastp (ordsucc x2) {x5 ∈ ordsucc (add_nat x2 x3)|not (x4 x5 (ordsucc (add_nat x2 x3)))}.
Apply H9 with or (∃ x5 . and (x5ordsucc (ordsucc (add_nat x2 x3))) (and (atleastp (ordsucc x0) x5) (∀ x6 . x6x5∀ x7 . x7x5(x6 = x7∀ x8 : ο . x8)x4 x6 x7))) (∃ x5 . and (x5ordsucc (ordsucc (add_nat x2 x3))) (and (atleastp (ordsucc x1) x5) (∀ x6 . x6x5∀ x7 . x7x5(x6 = x7∀ x8 : ο . x8)not (x4 x6 x7)))).
Let x5 of type ιι be given.
Assume H10: inj (ordsucc x2) {x6 ∈ ordsucc (add_nat x2 x3)|not (x4 x6 (ordsucc (add_nat x2 x3)))} x5.
Apply H10 with or (∃ x6 . and (x6ordsucc (ordsucc (add_nat x2 x3))) (and (atleastp (ordsucc x0) x6) (∀ x7 . x7x6∀ x8 . x8x6(x7 = x8∀ x9 : ο . x9)x4 x7 x8))) (∃ x6 . and (x6ordsucc (ordsucc (add_nat x2 x3))) (and (atleastp (ordsucc x1) x6) (∀ x7 . ...∀ x8 . ...(x7 = ...∀ x9 : ο . x9)not (x4 x7 x8)))).
...
...