Search for blocks/addresses/...
Proofgold Proof
pf
Let x0 of type
ι
be given.
Let x1 of type
ι
be given.
Let x2 of type
ι
be given.
Let x3 of type
ι
→
ι
→
ι
be given.
Let x4 of type
ι
→
ι
→
ι
be given.
Let x5 of type
ι
→
ι
→
ο
be given.
Assume H0:
explicit_OrderedField
x0
x1
x2
x3
x4
x5
.
Assume H1:
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
lt
x0
x1
x2
x3
x4
x5
x1
x6
⟶
x5
x1
x7
⟶
∃ x8 .
and
(
prim1
x8
(
1216a..
x0
(
λ x9 .
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
x9
)
)
)
(
x5
x7
(
x4
x8
x6
)
)
.
Assume H2:
∀ x6 .
prim1
x6
(
b5c9f..
x0
(
1216a..
x0
(
λ x7 .
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
x7
)
)
)
⟶
∀ x7 .
prim1
x7
(
b5c9f..
x0
(
1216a..
x0
(
λ x8 .
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
x8
)
)
)
⟶
(
∀ x8 .
prim1
x8
(
1216a..
x0
(
λ x9 .
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
x9
)
)
⟶
and
(
and
(
x5
(
f482f..
x6
x8
)
(
f482f..
x7
x8
)
)
(
x5
(
f482f..
x6
x8
)
(
f482f..
x6
(
x3
x8
x2
)
)
)
)
(
x5
(
f482f..
x7
(
x3
x8
x2
)
)
(
f482f..
x7
x8
)
)
)
⟶
∃ x8 .
and
(
prim1
x8
x0
)
(
∀ x9 .
prim1
x9
(
1216a..
x0
(
λ x10 .
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
x10
)
)
⟶
and
(
x5
(
f482f..
x6
x9
)
x8
)
(
x5
x8
(
f482f..
x7
x9
)
)
)
.
Apply and3I with
explicit_OrderedField
x0
x1
x2
x3
x4
x5
,
∀ x6 .
prim1
x6
x0
⟶
∀ x7 .
prim1
x7
x0
⟶
lt
x0
x1
x2
x3
x4
x5
x1
x6
⟶
x5
x1
x7
⟶
∃ x8 .
and
(
prim1
x8
(
1216a..
x0
(
λ x9 .
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
x9
)
)
)
(
x5
x7
(
x4
x8
x6
)
)
,
∀ x6 .
...
⟶
∀ x7 .
...
⟶
(
∀ x8 .
...
⟶
and
(
and
(
x5
(
f482f..
x6
x8
)
(
f482f..
x7
x8
)
)
(
x5
(
f482f..
x6
x8
)
(
f482f..
x6
(
x3
x8
x2
)
)
)
)
...
)
⟶
∃ x8 .
and
(
prim1
x8
x0
)
(
∀ x9 .
prim1
x9
(
1216a..
x0
(
λ x10 .
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
x10
)
)
⟶
and
(
x5
(
f482f..
x6
x9
)
x8
)
(
x5
x8
(
f482f..
x7
x9
)
)
)
leaving 3 subgoals.
...
...
...
■