Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ιιι be given.
Let x4 of type ιιι be given.
Let x5 of type ιιο be given.
Assume H0: explicit_OrderedField x0 x1 x2 x3 x4 x5.
Assume H1: ∀ x6 . prim1 x6 x0∀ x7 . prim1 x7 x0lt x0 x1 x2 x3 x4 x5 x1 x6x5 x1 x7∃ x8 . and (prim1 x8 (1216a.. x0 (λ x9 . natOfOrderedField_p x0 x1 x2 x3 x4 x5 x9))) (x5 x7 (x4 x8 x6)).
Assume H2: ∀ x6 . prim1 x6 (b5c9f.. x0 (1216a.. x0 (λ x7 . natOfOrderedField_p x0 x1 x2 x3 x4 x5 x7)))∀ x7 . prim1 x7 (b5c9f.. x0 (1216a.. x0 (λ x8 . natOfOrderedField_p x0 x1 x2 x3 x4 x5 x8)))(∀ x8 . prim1 x8 (1216a.. x0 (λ x9 . natOfOrderedField_p x0 x1 x2 x3 x4 x5 x9))and (and (x5 (f482f.. x6 x8) (f482f.. x7 x8)) (x5 (f482f.. x6 x8) (f482f.. x6 (x3 x8 x2)))) (x5 (f482f.. x7 (x3 x8 x2)) (f482f.. x7 x8)))∃ x8 . and (prim1 x8 x0) (∀ x9 . prim1 x9 (1216a.. x0 (λ x10 . natOfOrderedField_p x0 x1 x2 x3 x4 x5 x10))and (x5 (f482f.. x6 x9) x8) (x5 x8 (f482f.. x7 x9))).
Apply and3I with explicit_OrderedField x0 x1 x2 x3 x4 x5, ∀ x6 . prim1 x6 x0∀ x7 . prim1 x7 x0lt x0 x1 x2 x3 x4 x5 x1 x6x5 x1 x7∃ x8 . and (prim1 x8 (1216a.. x0 (λ x9 . natOfOrderedField_p x0 x1 x2 x3 x4 x5 x9))) (x5 x7 (x4 x8 x6)), ∀ x6 . ...∀ x7 . ...(∀ x8 . ...and (and (x5 (f482f.. x6 x8) (f482f.. x7 x8)) (x5 (f482f.. x6 x8) (f482f.. x6 (x3 x8 x2)))) ...)∃ x8 . and (prim1 x8 x0) (∀ x9 . prim1 x9 (1216a.. x0 (λ x10 . natOfOrderedField_p x0 x1 x2 x3 x4 x5 x10))and (x5 (f482f.. x6 x9) x8) (x5 x8 (f482f.. x7 x9))) leaving 3 subgoals.
...
...
...