Apply ax_c11__ax_c11_b__ax_c11n__ax_c15__ax_c9__ax_c9_b__ax_c9_b1__ax_c9_b2__ax_c9_b3__ax_c14__ax_c16__ax_riotaBAD__df_lsatoms__df_lshyp__df_lcv__df_lfl__df_lkr__df_ldual with
wceq clsh (cmpt (λ x0 . cvv) (λ x0 . crab (λ x1 . wa (wne (cv x1) (cfv (cv x0) cbs)) (wrex (λ x2 . wceq (cfv (cun (cv x1) (csn (cv x2))) (cfv (cv x0) clspn)) (cfv (cv x0) cbs)) (λ x2 . cfv (cv x0) cbs))) (λ x1 . cfv (cv x0) clss))).
Assume H0:
∀ x0 : ι → ι → ο . ∀ x1 x2 . (∀ x3 . wceq (cv x3) (cv x2)) ⟶ (∀ x3 . x0 x3 x2) ⟶ ∀ x3 . x0 x1 x3.
Assume H1:
∀ x0 : ι → ο . (∀ x1 . wceq (cv x1) (cv x1)) ⟶ (∀ x1 . x0 x1) ⟶ ∀ x1 . x0 x1.
Assume H2:
∀ x0 x1 . (∀ x2 . wceq (cv x2) (cv x1)) ⟶ ∀ x2 . wceq (cv x2) (cv x0).
Assume H3:
∀ x0 : ι → ο . ∀ x1 x2 . wn (∀ x3 . wceq (cv x3) (cv x1)) ⟶ wceq (cv x2) (cv x1) ⟶ x0 x2 ⟶ ∀ x3 . wceq (cv x3) (cv x1) ⟶ x0 x3.
Assume H9:
∀ x0 x1 . ... ⟶ ... ⟶ ... ⟶ ∀ x2 . wcel (cv x0) (cv ...).