Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ιιι be given.
Let x2 of type ιιι be given.
Let x3 of type ιιι be given.
Let x4 of type ι be given.
Let x5 of type ιιι be given.
Let x6 of type ιιιι be given.
Let x7 of type ιιι be given.
Let x8 of type ιιιι be given.
Let x9 of type ιιιι be given.
Let x10 of type ιιι be given.
Let x11 of type ιιι be given.
Let x12 of type ιιι be given.
Let x13 of type ιιι be given.
Apply unknownprop_f6577ef744ee240caee5f590e15fd6ef05a65801da70dc623c99d9fa33ed40ec with λ x14 x15 : ι → (ι → ι → ι)(ι → ι → ι)(ι → ι → ι)ι → (ι → ι → ι)(ι → ι → ι → ι)(ι → ι → ι)(ι → ι → ι → ι)(ι → ι → ι → ι)(ι → ι → ι)(ι → ι → ι)(ι → ι → ι)(ι → ι → ι) → ο . Loop x0 x1 x2 x3 x4(∀ x16 . In x16 x0∀ x17 . In x17 x0x5 x16 x17 = x2 (x1 x17 x16) (x1 x16 x17))(∀ x16 . In x16 x0∀ x17 . In x17 x0∀ x18 . In x18 x0x6 x16 x17 x18 = x2 (x1 x16 (x1 x17 x18)) (x1 (x1 x16 x17) x18))(∀ x16 . In x16 x0∀ x17 . In x17 x0and (and (and (and (x7 x16 x17 = x2 x16 (x1 x17 x16)) (x10 x16 x17 = x1 x16 (x1 x17 (x2 x16 x4)))) (x11 x16 x17 = x1 (x1 (x3 x4 x16) x17) x16)) (x12 x16 x17 = x1 (x2 x16 x17) (x2 (x2 x16 x4) x4))) (x13 x16 x17 = x1 (x3 x4 (x3 x4 x16)) (x3 x17 x16)))(∀ x16 . In x16 x0∀ x17 . In x17 x0∀ x18 . In x18 x0and (x8 x16 x17 x18 = x2 (x1 x17 x16) (x1 x17 (x1 x16 x18))) (x9 x16 x17 x18 = x3 (x1 (x1 x18 x16) x17) (x1 x16 x17)))x15 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13.
The subproof is completed by applying unknownprop_9b09b99fce48fbc4294fba4077c15371ba18b57a0bc4e20cfa1cf1c48cd99108 with Loop x0 x1 x2 x3 x4, ∀ x14 . In x14 x0∀ x15 . In x15 x0x5 x14 x15 = x2 (x1 x15 x14) (x1 x14 x15), ∀ x14 . In x14 x0∀ x15 . In x15 x0∀ x16 . In x16 x0x6 x14 x15 x16 = x2 (x1 x14 (x1 x15 x16)) (x1 (x1 x14 x15) x16), ∀ x14 . ...∀ x15 . ...and (and (and (and (x7 x14 x15 = x2 x14 (x1 x15 x14)) (x10 x14 x15 = x1 ... ...)) ...) ...) ..., ....