Let x0 of type ι → ι → ο be given.
Let x1 of type ι → ι → ο be given.
Let x2 of type ι → ο be given.
Let x3 of type ι be given.
Let x4 of type ι be given.
Let x5 of type ι be given.
Let x6 of type ι → ο be given.
Let x7 of type ι be given.
Let x8 of type ι be given.
Let x9 of type ι → ι be given.
Let x10 of type ι → ι → ι be given.
Let x11 of type ι → ι → ι be given.
Let x12 of type ι → ι be given.
Let x13 of type ι → ι be given.
Let x14 of type ι → ι → ι → ι be given.
Let x15 of type ι → ι → ι → ι be given.
Let x16 of type ι → ι → ι be given.
Let x17 of type ι be given.
Let x18 of type ι be given.
Let x19 of type ι → ι → ι → ι be given.
Let x20 of type ι be given.
Let x21 of type ι → ο be given.
Let x22 of type ι → ο be given.
Let x23 of type ι → ι → ι be given.
Let x24 of type ι → ο be given.
Let x25 of type ι → ι be given.
Let x26 of type ι → ι → ι be given.
Let x27 of type ι → ι be given.
Let x28 of type ι be given.
Let x29 of type ι be given.
Let x30 of type ι be given.
Let x31 of type ι → ο be given.
Let x32 of type ι be given.
Let x33 of type ι → ο be given.
Let x34 of type ι → ο be given.
Let x35 of type ι be given.
Let x36 of type ι → ο be given.
Let x37 of type ι be given.
Let x38 of type ι → ο be given.
Let x39 of type ι → ι → ι be given.
Let x40 of type ι be given.
Let x41 of type ι → ο be given.
Assume H5:
∀ x42 x43 . x41 x43 ⟶ (x43 = x42 ⟶ False) ⟶ x41 x42 ⟶ False.
Assume H6:
∀ x42 x43 . x0 x42 x43 ⟶ x41 x43 ⟶ False.
Assume H7:
∀ x42 . x41 x42 ⟶ (x42 = x40 ⟶ False) ⟶ False.
Assume H8:
∀ x42 x43 . x1 x42 x43 ⟶ (x41 x43 ⟶ False) ⟶ (x0 x42 x43 ⟶ False) ⟶ False.
Assume H9:
∀ x42 . (x39 x42 x40 = x40 ⟶ False) ⟶ False.
Assume H10:
∀ x42 x43 . x0 x43 x42 ⟶ (x1 x43 x42 ⟶ False) ⟶ False.
Assume H11:
(x38 x37 ⟶ False) ⟶ False.
Assume H12:
x41 x37 ⟶ False.
Assume H13:
x36 x35 ⟶ False.
Assume H15:
(x34 x35 ⟶ False) ⟶ False.
Assume H19:
x41 x3 ⟶ False.
Assume H23:
x41 x32 ⟶ False.
Assume H29:
(x31 x30 ⟶ False) ⟶ False.
Assume H31:
(x34 x29 ⟶ False) ⟶ False.
Assume H32:
x41 x29 ⟶ False.
Assume H34:
(x34 x28 ⟶ False) ⟶ False.
Assume H35:
∀ x42 . (x39 x42 x42 = x42 ⟶ False) ⟶ False.
Assume H36:
∀ x42 . (x41 x42 ⟶ False) ⟶ x34 x42 ⟶ x41 (x9 x42) ⟶ False.
Assume H37:
∀ x42 . (x41 x42 ⟶ False) ⟶ x34 x42 ⟶ x41 (x27 x42) ⟶ False.
Assume H38:
∀ x42 x43 x44 x45 . (x34 (x10 (x11 x43 x42) (x11 x45 x44)) ⟶ False) ⟶ False.
Assume H39:
∀ x42 x43 . (x34 (x26 x42 x43) ⟶ False) ⟶ False.
Assume H40:
∀ x42 . x41 x42 ⟶ (x41 (x9 x42) ⟶ False) ⟶ False.
Assume H41:
∀ x42 x43 . (x34 (x25 (x11 x43 x42)) ⟶ False) ⟶ False.
Assume H42:
∀ x42 . ... ⟶ (x41 (x27 x42) ⟶ False) ⟶ False.