Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ιο be given.
Assume H0: ∀ x1 . x0 x1struct_r x1.
Assume H1: ∀ x1 x2 . x0 x1x0 x2x0 (BinReln_product x1 x2).
Assume H2: ∀ x1 x2 . x0 x1x0 x2x0 (BinReln_exp x1 x2).
Apply andI with MetaCat_product_constr_p x0 BinRelnHom struct_id struct_comp (λ x1 x2 . unpack_r_i x1 (λ x3 . λ x4 : ι → ι → ο . unpack_r_i x2 (λ x5 . λ x6 : ι → ι → ο . pack_r (setprod x3 x5) (λ x7 x8 . and (x4 (ap x7 0) (ap x8 0)) (x6 (ap x7 1) (ap x8 1)))))) (λ x1 x2 . lam (setprod (ap x1 0) (ap x2 0)) (λ x3 . ap x3 0)) (λ x1 x2 . lam (setprod (ap x1 0) (ap x2 0)) (λ x3 . ap x3 1)) (λ x1 x2 x3 x4 x5 . lam (ap x3 0) (λ x6 . lam 2 (λ x7 . If_i (x7 = 0) (ap x4 x6) (ap x5 x6)))), ∀ x1 x2 . x0 x1x0 x2MetaCat_exp_p x0 BinRelnHom struct_id struct_comp BinReln_product (λ x3 x4 . lam (setprod (ap x3 0) (ap x4 0)) (λ x5 . ap x5 0)) (λ x3 x4 . lam (setprod (ap x3 0) (ap x4 0)) (λ x5 . ap x5 1)) (λ x3 x4 x5 x6 x7 . lam (ap x5 0) (λ x8 . lam 2 (λ x9 . If_i (x9 = 0) (ap x6 x8) (ap x7 x8)))) x1 x2 (BinReln_exp x1 x2) (lam (setprod (setexp (ap x2 0) (ap x1 0)) (ap x1 0)) (λ x3 . ap (ap x3 0) (ap x3 1))) (λ x3 x4 . lam (ap x3 0) (λ x5 . lam (ap x1 0) (λ x6 . ap x4 (lam 2 (λ x7 . If_i (x7 = 0) x5 x6))))) leaving 2 subgoals.
Apply unknownprop_5f5149dc445b1bf6ca4a7f60e27b87771b4704fa8e9610ac4ab806ac27b93c0b with x0 leaving 2 subgoals.
The subproof is completed by applying H0.
The subproof is completed by applying H1.
Let x1 of type ι be given.
Let x2 of type ι be given.
Assume H3: x0 x1.
Assume H4: x0 x2.
Apply and5I with x0 x1, x0 x2, x0 (BinReln_exp x1 x2), BinRelnHom (BinReln_product (BinReln_exp x1 x2) x1) x2 (lam (setprod (setexp (ap x2 0) (ap x1 0)) (ap x1 0)) (λ x3 . ap (ap x3 0) (ap x3 1))), ∀ x3 . ...∀ x4 . ...and (and (BinRelnHom ... ... ...) ...) ... leaving 5 subgoals.
...
...
...
...
...