Let x0 of type ι be given.
Let x1 of type ι → ι → ι be given.
Assume H0:
∀ x2 . In x2 x0 ⟶ ∀ x3 . In x3 x0 ⟶ In (x1 x2 x3) x0.
Let x2 of type ι be given.
Let x3 of type ι be given.
Let x4 of type ι be given.
Let x5 of type ι → ι → ι → ι be given.
Assume H4:
∀ x6 . In x6 x0 ⟶ ∀ x7 . In x7 x0 ⟶ ∀ x8 . In x8 x0 ⟶ In (x5 x6 x7 x8) x0.
Let x6 of type ι → ι → ι be given.
Assume H5:
∀ x7 . In x7 x0 ⟶ ∀ x8 . In x8 x0 ⟶ In (x6 x7 x8) x0.
Let x7 of type ι be given.
Let x8 of type ι → ι → ι be given.
Assume H7:
∀ x9 . In x9 x0 ⟶ ∀ x10 . In x10 x0 ⟶ In (x8 x9 x10) x0.
Assume H8:
∀ x9 . In x9 x0 ⟶ (x8 x7 x9 = x9 ⟶ False) ⟶ False.
Assume H9:
∀ x9 . In x9 x0 ⟶ (x8 x9 x7 = x9 ⟶ False) ⟶ False.
Assume H10:
∀ x9 . In x9 x0 ⟶ ∀ x10 . In x10 x0 ⟶ (x6 x9 (x8 x9 x10) = x10 ⟶ False) ⟶ False.
Assume H11:
∀ x9 . In x9 x0 ⟶ ∀ x10 . In x10 x0 ⟶ (x8 x9 (x6 x9 x10) = x10 ⟶ False) ⟶ False.
Assume H12:
∀ x9 . In x9 x0 ⟶ ∀ x10 . In x10 x0 ⟶ ∀ x11 . In x11 x0 ⟶ (x5 x9 x10 x11 = x6 (x8 x10 x9) (x8 x10 (x8 x9 x11)) ⟶ False) ⟶ False.
Assume H13:
∀ x9 . In x9 x0 ⟶ (x1 x7 x9 = x9 ⟶ False) ⟶ False.
Assume H14:
∀ x9 . In x9 x0 ⟶ ∀ x10 . In x10 x0 ⟶ ∀ x11 . In x11 x0 ⟶ (x5 x9 x10 (x1 x9 (x1 x10 (x5 x9 x10 (x1 x9 (x1 x10 (x5 x9 x10 (x1 x9 (x1 x10 (x5 x9 x10 (x1 x9 (x1 x10 (x5 x9 x10 (x1 x9 (x1 x10 x11)))))))))))))) = x11 ⟶ False) ⟶ False.
Assume H15:
∀ x9 . ... ⟶ ∀ x10 . ... ⟶ ∀ x11 . ... ⟶ ∀ x12 . ... ⟶ (x5 x9 x11 (x1 x10 (x1 x9 (x5 x11 x10 (x5 x9 x11 (x1 x10 (x1 x9 (x5 x11 x10 x12))))))) = ... ⟶ False) ⟶ False.