Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ιο be given.
Let x1 of type ιιι be given.
Let x2 of type ιιι be given.
Assume H0: ∀ x3 x4 . x0 x3x0 x4x0 (x1 x3 x4).
Assume H1: ∀ x3 x4 x5 . x0 x3x0 x4x0 x5x2 x3 (x1 x4 x5) = x1 (x2 x3 x4) (x2 x3 x5).
Assume H2: ∀ x3 x4 x5 . x0 x3x0 x4x0 x5x2 (x1 x3 x4) x5 = x1 (x2 x3 x5) (x2 x4 x5).
Let x3 of type ι be given.
Let x4 of type ι be given.
Let x5 of type ι be given.
Let x6 of type ι be given.
Let x7 of type ι be given.
Let x8 of type ι be given.
Let x9 of type ι be given.
Let x10 of type ι be given.
Let x11 of type ι be given.
Let x12 of type ι be given.
Let x13 of type ι be given.
Let x14 of type ι be given.
Assume H3: x0 x3.
Assume H4: x0 x4.
Assume H5: x0 x5.
Assume H6: x0 x6.
Assume H7: x0 x7.
Assume H8: x0 x8.
Assume H9: x0 x9.
Assume H10: x0 x10.
Assume H11: x0 x11.
Assume H12: x0 x12.
Assume H13: x0 x13.
Assume H14: x0 x14.
Apply unknownprop_96890bb6437669c5e09c9ab608ee6937f060bce73200a8371786914ccb14f8e2 with x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x1 x11 (x1 x12 (x1 x13 x14)), λ x15 x16 . x16 = x1 (x1 (x2 x3 x11) (x1 (x2 x3 x12) (x1 (x2 x3 x13) (x2 x3 x14)))) (x1 (x1 (x2 x4 x11) (x1 (x2 x4 x12) (x1 (x2 x4 x13) (x2 x4 x14)))) (x1 (x1 (x2 x5 x11) (x1 (x2 x5 x12) (x1 (x2 x5 x13) (x2 x5 x14)))) (x1 (x1 (x2 x6 x11) (x1 (x2 x6 x12) (x1 (x2 x6 x13) (x2 x6 x14)))) (x1 (x1 (x2 x7 x11) (x1 (x2 x7 x12) (x1 (x2 x7 x13) (x2 x7 x14)))) (x1 (x1 (x2 x8 x11) (x1 (x2 x8 x12) (x1 (x2 x8 x13) (x2 x8 x14)))) (x1 (x1 (x2 x9 x11) (x1 (x2 x9 x12) (x1 (x2 x9 x13) (x2 x9 x14)))) (x1 (x2 x10 x11) (x1 (x2 x10 x12) (x1 (x2 x10 x13) (x2 x10 x14)))))))))) leaving 12 subgoals.
The subproof is completed by applying H0.
The subproof is completed by applying H2.
The subproof is completed by applying H3.
The subproof is completed by applying H4.
The subproof is completed by applying H5.
The subproof is completed by applying H6.
The subproof is completed by applying H7.
The subproof is completed by applying H8.
The subproof is completed by applying H9.
The subproof is completed by applying H10.
Apply unknownprop_b48d4480a5526e51a91293fec1b0b9440be4280265441ce358bda14cced12479 with x0, x1, x11, x12, x13, x14 leaving 5 subgoals.
The subproof is completed by applying H0.
The subproof is completed by applying H11.
The subproof is completed by applying H12.
The subproof is completed by applying H13.
The subproof is completed by applying H14.
Apply unknownprop_483ab2c4cf352794c6e764ca83196651bc5de6ef598ec843402a4c02baafb47b with x0, x1, x2, x11, x12, x13, x14, x3, λ x15 x16 . x1 x16 (x1 (x2 x4 ...) ...) = ... leaving 8 subgoals.
...
...
...
...
...
...
...
...