Let x0 of type ι → ι → ο be given.
Let x1 of type ι → ι be given.
Let x2 of type ι → ι → ο be given.
Let x3 of type ι → ι → ο be given.
Let x4 of type ι be given.
Let x5 of type ι be given.
Let x6 of type ι be given.
Let x7 of type ι → ο be given.
Let x8 of type ι → ι be given.
Let x9 of type ι → ο be given.
Let x10 of type ι be given.
Let x11 of type ι → ο be given.
Let x12 of type ι be given.
Let x13 of type ι → ο be given.
Let x14 of type ι be given.
Let x15 of type ι be given.
Let x16 of type ι → ο be given.
Let x17 of type ι be given.
Let x18 of type ι → ο be given.
Let x19 of type ι be given.
Let x20 of type ι be given.
Let x21 of type ι be given.
Let x22 of type ι → ι be given.
Let x23 of type ι be given.
Let x24 of type ι be given.
Let x25 of type ι → ο be given.
Let x26 of type ι → ο be given.
Let x27 of type ι → ι → ι be given.
Let x28 of type ι be given.
Let x29 of type ι be given.
Let x30 of type ι → ο be given.
Let x31 of type ι be given.
Let x32 of type ι be given.
Let x33 of type ι be given.
Let x34 of type ι be given.
Let x35 of type ι be given.
Let x36 of type ι be given.
Let x37 of type ι → ο be given.
Let x38 of type ι be given.
Let x39 of type ι → ι → ι → ο be given.
Let x40 of type ι be given.
Let x41 of type ι be given.
Let x42 of type ι → ι be given.
Let x43 of type ι be given.
Let x44 of type ι → ι → ι be given.
Let x45 of type ι → ι → ι be given.
Let x46 of type ι → ο be given.
Let x47 of type ι be given.
Let x48 of type ι → ο be given.
Assume H5:
∀ x49 x50 . x48 x50 ⟶ (x50 = x49 ⟶ False) ⟶ x48 x49 ⟶ False.
Assume H6:
∀ x49 x50 . x0 x49 x50 ⟶ x48 x50 ⟶ False.
Assume H7:
∀ x49 . x48 x49 ⟶ (x49 = x47 ⟶ False) ⟶ False.
Assume H8:
∀ x49 x50 x51 . x0 x49 x50 ⟶ x2 x50 (x1 x51) ⟶ x48 x51 ⟶ False.
Assume H9:
∀ x49 x50 x51 . x46 x51 ⟶ x46 x49 ⟶ x46 x50 ⟶ (x45 x51 (x45 x49 x50) = x45 (x45 x51 x49) x50 ⟶ False) ⟶ False.
Assume H10:
∀ x49 x50 x51 . x0 x50 x51 ⟶ x2 x51 (x1 x49) ⟶ (x2 x50 x49 ⟶ False) ⟶ False.
Assume H11:
∀ x49 . x46 x49 ⟶ (x44 x49 x43 = x49 ⟶ False) ⟶ False.
Assume H12:
∀ x49 x50 . x3 x50 x49 ⟶ (x2 x50 (x1 x49) ⟶ False) ⟶ False.
Assume H13:
∀ x49 x50 . x2 x50 (x1 x49) ⟶ (x3 x50 x49 ⟶ False) ⟶ False.
Assume H14:
∀ x49 . x46 x49 ⟶ (x45 x4 x49 = x49 ⟶ False) ⟶ False.
Assume H15:
∀ x49 x50 . x2 x49 x50 ⟶ (x48 x50 ⟶ False) ⟶ (x0 x49 x50 ⟶ False) ⟶ False.
Assume H16:
∀ x49 . x46 x49 ⟶ (x45 x49 x43 = x43 ⟶ False) ⟶ False.
Assume H17:
∀ x49 x50 . x0 x50 x49 ⟶ (x2 x50 x49 ⟶ False) ⟶ False.
Assume H18:
(x2 x47 x5 ⟶ False) ⟶ False.
Assume H19:
∀ x49 x50 . x46 x50 ⟶ x46 x49 ⟶ (x44 (x42 x50) (x42 x49) = x44 x49 x50 ⟶ False) ⟶ False.
Assume H20:
∀ x49 x50 x51 . x46 x51 ⟶ x46 x49 ⟶ x46 x50 ⟶ (x45 (x45 x51 x49) x50 = x45 x51 (x45 x49 x50) ⟶ False) ⟶ False.
Assume H21:
(x2 x40 x41 ⟶ False) ⟶ False.
Assume H22:
(x2 x40 x6 ⟶ False) ⟶ False.
Assume H23:
(x39 x40 x41 x6 ⟶ False) ⟶ False.
Assume H25:
x48 x40 ⟶ False.
Assume H26:
∀ x49 . x46 x49 ⟶ (x45 x49 (x42 x4) = x42 x49 ⟶ False) ⟶ False.
Assume H27:
(x2 ... ... ⟶ False) ⟶ False.