Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ιιι be given.
Let x4 of type ιιι be given.
Let x5 of type ιιο be given.
Let x6 of type ιιι be given.
Let x7 of type ι be given.
Assume H0: ∀ x8 . x8x0∀ x9 . x9x0∀ x10 . x10x0∀ x11 . x11x0x6 x8 x9 = x6 x10 x11and (x8 = x10) (x9 = x11).
Assume H1: ∀ x8 . x8x0∀ x9 . x9x0x3 x8 x9x0.
Assume H2: ∀ x8 . x8x0∀ x9 . x9x0x3 x8 x9 = x3 x9 x8.
Assume H3: x1x0.
Assume H4: ∀ x8 . x8x0x3 x1 x8 = x8.
Assume H5: ∀ x8 . x8x0∀ x9 . x9x0x4 x8 x9x0.
Assume H6: ∀ x8 . x8x0∀ x9 . x9x0x4 x8 x9 = x4 x9 x8.
Assume H7: x2x0.
Assume H8: ∀ x8 . x8x0x4 x2 x8 = x8.
Assume H9: explicit_Field_minus x0 x1 x2 x3 x4 x2x0.
Assume H10: ∀ x8 . x8x0∀ x9 . x9x0x6 x8 x9x7.
Assume H11: ∀ x8 . x8x7∀ x9 : ι → ο . (∀ x10 . x10x0∀ x11 . x11x0x8 = x6 x10 x11x9 (x6 x10 x11))x9 x8.
Assume H12: ∀ x8 . x8x0∀ x9 . x9x0(λ x10 . prim0 (λ x11 . and (x11x0) (∃ x12 . and (x12x0) (x10 = x6 x11 x12)))) (x6 x8 x9) = x8.
Assume H13: ∀ x8 . x8x0∀ x9 . x9x0(λ x10 . prim0 (λ x11 . and (x11x0) (x10 = x6 ((λ x12 . prim0 (λ x13 . and (x13x0) (∃ x14 . and (x14x0) (x12 = x6 x13 x14)))) x10) x11))) (x6 x8 x9) = x9.
Assume H14: ∀ x8 . x8x0x6 x8 x1{x9 ∈ x7|(λ x10 . x6 ((λ x11 . prim0 (λ x12 . and (x12x0) (∃ x13 . and (x13x0) (x11 = x6 x12 x13)))) x10) x1) x9 = x9}.
Assume H15: ∀ x8 . ...(λ x9 . prim0 (λ x10 . ...)) .......
...