Let x0 of type ι → ι → ο be given.
Let x1 of type ι → ι → ο be given.
Let x2 of type ι → ι → ο be given.
Let x3 of type ι be given.
Let x4 of type ι be given.
Let x5 of type ι be given.
Let x6 of type ι be given.
Let x7 of type ι be given.
Let x8 of type ι → ι be given.
Let x9 of type ι → ι be given.
Let x10 of type ι → ι → ι be given.
Let x11 of type ι → ι → ι be given.
Let x12 of type ι → ι → ι be given.
Let x13 of type ι → ο be given.
Let x14 of type ι → ο be given.
Let x15 of type ι → ο be given.
Let x16 of type ι → ο be given.
Let x17 of type ι → ο be given.
Let x18 of type ι → ο be given.
Let x19 of type ι → ο be given.
Let x20 of type ι → ο be given.
Let x21 of type ι → ο be given.
Let x22 of type ι → ο be given.
Let x23 of type ι → ο be given.
Assume H0:
∀ x24 x25 . iff (x1 x24 x25) (∀ x26 . x0 x26 x24 ⟶ x0 x26 x25).
Assume H1:
∀ x24 . iff (x16 x24) (∃ x25 . and (x1 x25 x24) (and (not (x1 x24 x25)) (x15 x25))).
Assume H2:
∀ x24 x25 . x0 x24 x25 ⟶ not (x0 x25 x24).
Assume H3:
∀ x24 . iff (x0 x24 x6) (or (or (x24 = x3) (x24 = x4)) (x24 = x5)).
Assume H4: ∀ x24 x25 x26 . x0 x26 x24 ⟶ x0 x26 x25 ⟶ x0 x26 (x11 x24 x25).
Assume H5: ∀ x24 x25 x26 . x1 x25 x26 ⟶ x1 (x10 x24 x25) (x10 x24 x26).
Assume H6: ∀ x24 x25 . x2 (x12 x24 x25) (x11 x24 x25).
Assume H7: ∀ x24 x25 . x0 x25 x24 ⟶ x1 (x9 x25) x24.
Assume H8:
∀ x24 x25 . x0 x24 (x8 (x9 x25)) ⟶ or (x24 = x3) (x24 = x9 x25).
Assume H9:
∀ x24 x25 x26 . x1 x26 (x10 x24 x25) ⟶ ∀ x27 . x0 x27 x24 ⟶ not (x0 x27 x26) ⟶ x15 x26 ⟶ x15 (x10 (x12 x24 (x9 x27)) x25).
Assume H10:
∀ x24 x25 . x16 (x10 x24 x25) ⟶ or (x13 x24) (x15 x25).
Assume H11:
not (x4 = x5).
Assume H12: ∀ x24 . x0 x3 x24 ⟶ x1 x4 x24.
Assume H13:
∀ x24 . x1 x24 (x9 x4) ⟶ or (x24 = x3) (x24 = x9 x4).
Assume H14:
∀ x24 . x1 x24 (x9 (x9 x4)) ⟶ or (x24 = x3) (x24 = x9 (x9 x4)).
Assume H15:
not (x0 x4 (x8 (x9 x4))).
Assume H16:
not (x9 x4 = x5).
Assume H17:
not (x0 (x9 x4) (x9 x5)).
Assume H18: x0 (x9 x4) (x12 (x8 x5) (x9 x4)).
Assume H19:
not (x4 = x9 (x9 x4)).
Assume H20:
not (x1 (x12 (x8 x5) (x8 (x9 x5))) x5).
Assume H21:
not (x5 = x12 x6 (x9 x4)).
Assume H22:
not (x0 (x9 (x9 x4)) x6).
Assume H23:
not (x0 (x9 ...) ...).