Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ((ιι) → (((ιι) → ιι) → (ιι) → ι) → ιι) → (ιιι) → (ιι) → ι be given.
Let x1 of type (((ι(ιι) → ιι) → ι) → ι) → ιιι be given.
Let x2 of type ((((ιι) → ιι) → ((ιι) → ι) → ι) → (ιιι) → ιιι) → ι((ιι) → (ιι) → ι) → ιι be given.
Let x3 of type (((ιι) → ι) → (CT2 ι) → CT2 ι) → ιι be given.
Assume H0: ∀ x4 : ι → (ι → ι)(ι → ι)ι → ι . ∀ x5 : (((ι → ι)ι → ι)(ι → ι)ι → ι) → ι . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι . x3 (λ x8 : (ι → ι) → ι . λ x9 : (ι → ι → ι) → ι . λ x10 : ι → ι → ι . x2 (λ x11 : ((ι → ι)ι → ι)((ι → ι) → ι) → ι . λ x12 : ι → ι → ι . λ x13 x14 . Inj1 0) (x2 (λ x11 : ((ι → ι)ι → ι)((ι → ι) → ι) → ι . λ x12 : ι → ι → ι . λ x13 x14 . x12 (x2 (λ x15 : ((ι → ι)ι → ι)((ι → ι) → ι) → ι . λ x16 : ι → ι → ι . λ x17 x18 . 0) 0 (λ x15 x16 : ι → ι . 0) 0) (x1 (λ x15 : (ι → (ι → ι)ι → ι) → ι . 0) 0 0)) (x8 (λ x11 . setsum 0 0)) (λ x11 x12 : ι → ι . Inj0 (setsum 0 0)) 0) (λ x11 x12 : ι → ι . x3 (λ x13 : (ι → ι) → ι . λ x14 : (ι → ι → ι) → ι . λ x15 : ι → ι → ι . Inj0 (setsum 0 0)) (x0 (λ x13 : ι → ι . λ x14 : ((ι → ι)ι → ι)(ι → ι) → ι . λ x15 . x14 (λ x16 : ι → ι . λ x17 . 0) (λ x16 . 0)) (λ x13 x14 . x1 (λ x15 : (ι → (ι → ι)ι → ι) → ι . 0) 0 0) (λ x13 . 0))) (x10 (setsum 0 (Inj0 0)) 0)) (x7 (Inj1 (setsum 0 0)) 0) = x2 (λ x8 : ((ι → ι)ι → ι)((ι → ι) → ι) → ι . λ x9 : ι → ι → ι . λ x10 x11 . x10) (x7 (setsum (x3 (λ x8 : (ι → ι) → ι . λ x9 : (ι → ι → ι) → ι . λ x10 : ι → ι → ι . 0) (x7 0 0)) 0) (x3 (λ x8 : (ι → ι) → ι . λ x9 : (ι → ι → ι) → ι . λ x10 : ι → ι → ι . setsum (x7 0 0) (x7 0 0)) (setsum (Inj1 0) 0))) (λ x8 x9 : ι → ι . x2 (λ x10 : ((ι → ι)ι → ι)((ι → ι) → ι) → ι . λ x11 : ι → ι → ι . λ x12 x13 . x1 (λ x14 : (ι → (ι → ι)ι → ι) → ι . 0) 0 x12) (setsum 0 0) (λ x10 x11 : ι → ι . x1 (λ x12 : (ι → (ι → ι)ι → ι) → ι . 0) (x11 0) (x9 (x2 (λ x12 : ((ι → ι)ι → ι)((ι → ι) → ι) → ι . λ x13 : ι → ι → ι . λ x14 x15 . 0) 0 (λ x12 x13 : ι → ι . 0) 0))) (x7 0 0)) (Inj1 0).
Assume H1: ∀ x4 x5 . ∀ x6 x7 : ι → ι . x3 (λ x8 : (ι → ι) → ι . λ x9 : (ι → ι → ι) → ι . λ x10 : ι → ι → ι . x9 (λ x11 x12 . Inj0 x12)) (x0 (λ x8 : ι → ι . λ x9 : ((ι → ι)ι → ι)(ι → ι) → ι . λ x10 . x2 (λ x11 : ((ι → ι)ι → ι)((ι → ι) → ι) → ι . λ x12 : ι → ι → ι . λ x13 x14 . setsum 0 0) x10 (λ x11 x12 : ι → ι . 0) (x3 (λ x11 : (ι → ι) → ι . λ x12 : (ι → ι → ι) → ι . λ x13 : ι → ι → ι . Inj1 0) 0)) (λ x8 x9 . Inj0 (x1 (λ x10 : (ι → (ι → ι)ι → ι) → ι . x10 (λ x11 . λ x12 : ι → ι . λ x13 . 0)) (setsum 0 0) 0)) (λ x8 . setsum 0 (x2 (λ x9 : ((ι → ι)ι → ι)((ι → ι) → ι) → ι . λ x10 : ι → ι → ι . λ x11 x12 . x0 (λ x13 : ι → ι . λ x14 : ((ι → ι)ι → ι)(ι → ι) → ι . λ x15 . 0) (λ x13 x14 . 0) (λ x13 . 0)) (x7 0) (λ x9 x10 : ι → ι . x8) (x2 (λ x9 : ((ι → ι)ι → ι)((ι → ι) → ι) → ι . λ x10 : ι → ι → ι . λ x11 x12 . 0) 0 (λ x9 x10 : ι → ι . 0) 0)))) = Inj1 0.
Assume H2: ∀ x4 . ∀ x5 : (((ι → ι) → ι)(ι → ι) → ι)ι → ι → ι → ι . ∀ x6 . ∀ x7 : ι → (ι → ι → ι) → ι . x2 (λ x8 : ((ι → ι)ι → ι)((ι → ι) → ι) → ι . λ x9 : ι → ι → ι . λ x10 x11 . x1 (λ x12 : (ι → (ι → ι)ι → ι) → ι . 0) x10 (x2 (λ x12 : ((ι → ι)ι → ι)((ι → ι) → ι) → ι . λ x13 : ι → ι → ι . λ x14 x15 . setsum (Inj1 0) (setsum 0 0)) (setsum (Inj1 0) (x0 ... ... ...)) ... 0)) ... ... 0 = ....
...