Let x0 of type ι → ο be given.
Let x1 of type ι → ι → ο be given.
Let x2 of type ι be given.
Let x3 of type ι be given.
Let x4 of type ι → ι → ι be given.
Let x5 of type ι be given.
Let x6 of type ι → ι be given.
Let x7 of type ι → ι be given.
Let x8 of type ι be given.
Let x9 of type ι → ι → ι → ο be given.
Let x10 of type ι → ο be given.
Let x11 of type ι be given.
Let x12 of type ι be given.
Let x13 of type ι be given.
Let x14 of type ι be given.
Let x15 of type ι → ο be given.
Let x16 of type ι be given.
Let x17 of type ι be given.
Let x18 of type ι be given.
Let x19 of type ι be given.
Let x20 of type ι → ι → ι be given.
Let x21 of type ι → ο be given.
Let x22 of type ι → ο be given.
Let x23 of type ι → ο be given.
Let x24 of type ι → ο be given.
Let x25 of type ι → ο be given.
Let x26 of type ι be given.
Let x27 of type ι → ο be given.
Let x28 of type ι → ο be given.
Let x29 of type ι → ι be given.
Let x30 of type ι → ο be given.
Let x31 of type ι be given.
Let x32 of type ι be given.
Let x33 of type ι be given.
Let x34 of type ι be given.
Let x35 of type ι be given.
Let x36 of type ι → ο be given.
Let x37 of type ι → ι → ι be given.
Let x38 of type ι → ι be given.
Let x39 of type ι → ι be given.
Let x40 of type ι be given.
Let x41 of type ι be given.
Let x42 of type ι → ι → ι be given.
Let x43 of type ι → ι → ο be given.
Let x44 of type ι → ι → ο be given.
Let x45 of type ι → ι be given.
Let x46 of type ι be given.
Let x47 of type ι → ι → ι be given.
Let x48 of type ι → ι → ι be given.
Let x49 of type ι → ο be given.
Let x50 of type ι → ο be given.
Let x51 of type ι → ο be given.
Let x52 of type ι → ι → ο be given.
Let x53 of type ι → ο be given.
Assume H5:
∀ x54 x55 . x53 x55 ⟶ x53 x54 ⟶ (x52 x55 x54 ⟶ False) ⟶ (x51 x54 ⟶ False) ⟶ (x50 x55 ⟶ False) ⟶ False.
Assume H6:
∀ x54 x55 . x0 x55 ⟶ (x55 = x54 ⟶ False) ⟶ x0 x54 ⟶ False.
Assume H7:
∀ x54 x55 . x53 x55 ⟶ x53 x54 ⟶ (x52 x55 x54 ⟶ False) ⟶ (x50 x55 ⟶ False) ⟶ (x51 x54 ⟶ False) ⟶ False.
Assume H8:
∀ x54 x55 . x1 x54 x55 ⟶ x0 x55 ⟶ False.
Assume H9:
∀ x54 x55 x56 x57 . x49 x57 ⟶ x49 x54 ⟶ x49 x56 ⟶ x49 x55 ⟶ (x48 (x47 x57 x54) (x47 x56 x55) = x47 (x48 x57 x56) (x48 x54 x55) ⟶ False) ⟶ False.
Assume H10:
∀ x54 x55 x56 . x53 x56 ⟶ x53 x54 ⟶ x53 x55 ⟶ (x52 x56 x2 ⟶ False) ⟶ (x52 x55 x54 ⟶ False) ⟶ x52 (x47 x55 x56) (x47 x54 x56) ⟶ False.
Assume H11:
∀ x54 x55 . x53 x55 ⟶ x53 x54 ⟶ x52 x55 x54 ⟶ (x0 x55 ⟶ False) ⟶ (x50 x54 ⟶ False) ⟶ (x51 x55 ⟶ False) ⟶ False.
Assume H12:
∀ x54 . x0 x54 ⟶ (x54 = x3 ⟶ False) ⟶ False.
Assume H13:
∀ x54 . x49 x54 ⟶ (x47 x54 x46 = x54 ⟶ False) ⟶ False.
Assume H14:
∀ x54 . x49 x54 ⟶ (x54 = x2 ⟶ False) ⟶ (x47 x54 x54 = x46 ⟶ False) ⟶ False.
Assume H15:
∀ x54 x55 x56 . x1 x54 x55 ⟶ x44 x55 (x45 x56) ⟶ x0 x56 ⟶ False.
Assume H16:
∀ x54 x55 . x53 x55 ⟶ x53 x54 ⟶ x52 x55 x54 ⟶ (x0 x54 ⟶ False) ⟶ (x51 x55 ⟶ False) ⟶ (x50 x54 ⟶ False) ⟶ False.
Assume H17:
∀ x54 . x49 x54 ⟶ (x47 x2 x54 = x2 ⟶ False) ⟶ False.
Assume H18:
∀ x54 x55 x56 . x1 x55 x56 ⟶ x44 x56 (x45 x54) ⟶ (x44 x55 x54 ⟶ False) ⟶ False.
Assume H19:
∀ x54 x55 . x53 x55 ⟶ x53 x54 ⟶ x52 x55 x54 ⟶ (x50 x54 ⟶ False) ⟶ x50 x55 ⟶ False.
Assume H20:
∀ x54 . ... ⟶ (x4 x54 ... = ... ⟶ False) ⟶ False.