Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ι → ι → ι be given.
Let x4 of type ι → ι → ι be given.
Let x5 of type ι → ι → ο be given.
Let x6 of type ι → ι → ι be given.
Apply unknownprop_6506e7f62d1e2e82dd2eb322e79d587cc72544941960f50f6323eafe1cce767a with
x0,
x1,
x2,
x3,
x4,
x5,
(∀ x7 . ... ⟶ ∀ x8 . ... ⟶ ∀ x9 . ... ⟶ ∀ x10 . ... ⟶ x6 x7 ... = ... ⟶ and (x7 = x9) (x8 = x10)) ⟶ ∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6) ⟶ (x7 = x6 x1 x1 ⟶ ∀ x8 : ο . x8) ⟶ ∃ x8 . and (prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)) ((λ x9 x10 . x6 (x3 (x4 ((λ x11 . prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x11 = x6 x12 x13)))) x9) ((λ x11 . prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x11 = x6 x12 x13)))) x10)) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 ((λ x11 . prim0 (λ x12 . and (prim1 x12 x0) (x11 = x6 ((λ x13 . prim0 (λ x14 . and (prim1 x14 x0) (∃ x15 . and (prim1 x15 x0) (x13 = x6 x14 x15)))) x11) x12))) x9) ((λ x11 . prim0 (λ x12 . and (prim1 x12 x0) (x11 = x6 ((λ x13 . prim0 (λ x14 . and (prim1 x14 x0) (∃ x15 . and (prim1 x15 x0) (x13 = x6 x14 x15)))) x11) x12))) x10)))) (x3 (x4 ((λ x11 . prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x11 = x6 x12 x13)))) x9) ((λ x11 . prim0 (λ x12 . and (prim1 x12 x0) (x11 = x6 ((λ x13 . prim0 (λ x14 . and (prim1 x14 x0) (∃ x15 . and (prim1 x15 x0) (x13 = x6 x14 x15)))) x11) x12))) x10)) (x4 ((λ x11 . prim0 (λ x12 . and (prim1 x12 x0) (x11 = x6 ((λ x13 . prim0 (λ x14 . and (prim1 x14 x0) (∃ x15 . and (prim1 x15 x0) (x13 = x6 x14 x15)))) x11) x12))) x9) ((λ x11 . prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x11 = x6 x12 x13)))) x10)))) x7 x8 = x6 x2 x1).