Let x0 of type ι → ι → ο be given.
Let x1 of type ι → ι be given.
Let x2 of type ι → ι → ο be given.
Let x3 of type ι → ι → ο be given.
Let x4 of type ι → ο be given.
Let x5 of type ι → ι be given.
Let x6 of type ι → ι → ι be given.
Let x7 of type ι → ι → ι be given.
Let x8 of type ι → ο be given.
Let x9 of type ι → ο be given.
Let x10 of type ι be given.
Let x11 of type ι → ο be given.
Let x12 of type ι be given.
Let x13 of type ι → ο be given.
Let x14 of type ι be given.
Let x15 of type ι → ο be given.
Let x16 of type ι be given.
Let x17 of type ι be given.
Let x18 of type ι be given.
Let x19 of type ι → ι → ι be given.
Let x20 of type ι → ι be given.
Let x21 of type ι → ο be given.
Let x22 of type ι → ο be given.
Let x23 of type ι → ι be given.
Let x24 of type ι be given.
Let x25 of type ι be given.
Let x26 of type ι be given.
Let x27 of type ι → ι → ι be given.
Let x28 of type ι → ι → ι be given.
Let x29 of type ι be given.
Let x30 of type ι → ο be given.
Let x31 of type ι be given.
Let x32 of type ι → ο be given.
Let x33 of type ι be given.
Let x34 of type ι be given.
Let x35 of type ι → ι be given.
Let x36 of type ι be given.
Let x37 of type ι → ο be given.
Assume H5:
∀ x38 x39 . x37 x39 ⟶ (x39 = x38 ⟶ False) ⟶ x37 x38 ⟶ False.
Assume H6:
∀ x38 x39 . x0 x38 x39 ⟶ x37 x39 ⟶ False.
Assume H7:
∀ x38 . x37 x38 ⟶ (x38 = x36 ⟶ False) ⟶ False.
Assume H8:
∀ x38 x39 x40 . x0 x38 x39 ⟶ x2 x39 (x1 x40) ⟶ x37 x40 ⟶ False.
Assume H9:
∀ x38 x39 x40 . x0 x39 x40 ⟶ x2 x40 (x1 x38) ⟶ (x2 x39 x38 ⟶ False) ⟶ False.
Assume H10:
∀ x38 x39 . x3 x39 x38 ⟶ (x2 x39 (x1 x38) ⟶ False) ⟶ False.
Assume H11:
∀ x38 x39 . x2 x39 (x1 x38) ⟶ (x3 x39 x38 ⟶ False) ⟶ False.
Assume H12:
∀ x38 x39 . x2 x38 x39 ⟶ (x37 x39 ⟶ False) ⟶ (x0 x38 x39 ⟶ False) ⟶ False.
Assume H13:
∀ x38 x39 . x0 x39 x38 ⟶ (x2 x39 x38 ⟶ False) ⟶ False.
Assume H14:
∀ x38 x39 x40 . x4 x40 ⟶ x8 x40 ⟶ x0 x39 (x5 x40) ⟶ x38 = x7 x40 x39 ⟶ (x0 (x6 x39 x38) x40 ⟶ False) ⟶ False.
Assume H15:
∀ x38 x39 x40 . x4 x40 ⟶ x8 x40 ⟶ x0 (x6 x39 x38) x40 ⟶ (x38 = x7 x40 x39 ⟶ False) ⟶ False.
Assume H16:
∀ x38 x39 x40 . x4 x40 ⟶ x8 x40 ⟶ x0 (x6 x39 x38) x40 ⟶ (x0 x39 (x5 x40) ⟶ False) ⟶ False.
Assume H17:
∀ x38 x39 . x4 x39 ⟶ x4 x38 ⟶ x3 x39 x38 ⟶ (x3 (x35 x39) (x35 x38) ⟶ False) ⟶ False.
Assume H18:
∀ x38 x39 . x4 x39 ⟶ x4 x38 ⟶ x3 x39 x38 ⟶ (x3 (x5 x39) (x5 x38) ⟶ False) ⟶ False.
Assume H19:
∀ x38 . (x3 x38 x38 ⟶ False) ⟶ False.
Assume H21:
x37 x10 ⟶ False.
Assume H22:
x11 x12 ⟶ False.
Assume H26:
(x13 x34 ⟶ False) ⟶ False.
Assume H28:
x37 x34 ⟶ False.
Assume H30:
(x13 ... ⟶ False) ⟶ False.