Let x0 of type ι be given.
Let x1 of type (ι → ο) → ο be given.
Let x2 of type ι → ι → ι be given.
Let x3 of type ι → ι be given.
Let x4 of type ι be given.
Apply H0 with
λ x5 . x5 = a0d6b.. x0 x1 x2 x3 x4 ⟶ ∀ x6 . prim1 x6 x0 ⟶ ∀ x7 . prim1 x7 x0 ⟶ prim1 (x2 x6 x7) x0 leaving 2 subgoals.
Let x5 of type ι be given.
Let x6 of type (ι → ο) → ο be given.
Let x7 of type ι → ι → ι be given.
Assume H1:
∀ x8 . prim1 x8 x5 ⟶ ∀ x9 . prim1 x9 x5 ⟶ prim1 (x7 x8 x9) x5.
Let x8 of type ι → ι be given.
Assume H2:
∀ x9 . prim1 x9 x5 ⟶ prim1 (x8 x9) x5.
Let x9 of type ι be given.
Apply unknownprop_362e33f0a84f3e7cce42c70ecdc5f8832807ca2eb4cf10d0fabfb2e7152b47da with
x5,
x0,
x6,
x1,
x7,
x2,
x8,
x3,
x9,
x4,
∀ x10 . prim1 x10 x0 ⟶ ∀ x11 . prim1 x11 x0 ⟶ prim1 (x2 x10 x11) x0 leaving 2 subgoals.
The subproof is completed by applying H4.
Assume H5:
and (and (and (x5 = x0) (∀ x10 : ι → ο . (∀ x11 . x10 x11 ⟶ prim1 x11 x5) ⟶ x6 x10 = x1 x10)) (∀ x10 . prim1 x10 x5 ⟶ ∀ x11 . prim1 x11 x5 ⟶ x7 x10 x11 = x2 x10 x11)) (∀ x10 . prim1 x10 x5 ⟶ x8 x10 = x3 x10).
Apply H5 with
x9 = x4 ⟶ ∀ x10 . prim1 x10 x0 ⟶ ∀ x11 . prim1 x11 x0 ⟶ prim1 (x2 x10 x11) x0.
Assume H6:
and (and (x5 = x0) (∀ x10 : ι → ο . (∀ x11 . x10 x11 ⟶ prim1 x11 x5) ⟶ x6 x10 = x1 x10)) (∀ x10 . prim1 x10 x5 ⟶ ∀ x11 . prim1 x11 x5 ⟶ x7 x10 x11 = x2 x10 x11).
Apply H6 with
(∀ x10 . prim1 x10 x5 ⟶ x8 x10 = x3 x10) ⟶ x9 = x4 ⟶ ∀ x10 . prim1 x10 x0 ⟶ ∀ x11 . prim1 x11 x0 ⟶ prim1 (x2 x10 x11) x0.
Assume H7:
and (x5 = x0) (∀ x10 : ι → ο . (∀ x11 . x10 x11 ⟶ prim1 x11 x5) ⟶ x6 x10 = x1 x10).
Apply H7 with
(∀ x10 . ... ⟶ ∀ x11 . prim1 ... ... ⟶ x7 x10 x11 = x2 x10 x11) ⟶ (∀ x10 . prim1 x10 x5 ⟶ x8 x10 = x3 x10) ⟶ x9 = x4 ⟶ ∀ x10 . prim1 x10 x0 ⟶ ∀ x11 . prim1 x11 x0 ⟶ prim1 (x2 x10 x11) x0.