Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ((ιιιι) → ((ιιι) → ιιι) → ι) → ιο be given.
Let x1 of type (ιιι) → ιιο be given.
Let x2 of type (ιι) → ((ι(ιι) → ι) → ιι) → ο be given.
Let x3 of type (ιιι) → ιο be given.
Assume H0: ∀ x4 : ι → ι → ι → ι → ι . ∀ x5 x6 . ∀ x7 : ι → ι . x0 (λ x8 : ι → ι → ι → ι . λ x9 : (ι → ι → ι)ι → ι → ι . setsum (Inj1 (Inj1 (Inj0 0))) x6) (Inj0 (x7 (x7 (Inj1 0))))x3 (λ x8 x9 . 0) (setsum 0 (setsum x5 (Inj1 (x4 0 0 0 0)))).
Assume H1: ∀ x4 x5 x6 . ∀ x7 : (ι → ι)(ι → ι → ι) → ι . In (Inj0 x5) x4x3 (λ x8 x9 . 0) (setsum (setsum (Inj1 x4) x5) (setsum (x7 (λ x8 . x6) (λ x8 x9 . 0)) (x7 (λ x8 . 0) (λ x8 x9 . 0))))x1 (λ x8 x9 . setsum (Inj1 (x7 (λ x10 . Inj0 0) (λ x10 x11 . 0))) (Inj1 0)) 0 0.
Assume H2: ∀ x4 . ∀ x5 : ((ι → ι → ι)ι → ι) → ι . ∀ x6 x7 . In (Inj1 (Inj0 0)) (Inj0 (Inj0 x7))x0 (λ x8 : ι → ι → ι → ι . λ x9 : (ι → ι → ι)ι → ι → ι . 0) (setsum (x5 (λ x8 : ι → ι → ι . λ x9 . setsum (setsum 0 0) (x8 0 0))) x7)x2 (λ x8 . Inj1 (Inj0 (setsum (setsum 0 0) x8))) (λ x8 : ι → (ι → ι) → ι . λ x9 . 0).
Assume H3: ∀ x4 . ∀ x5 : ι → (ι → ι) → ι . ∀ x6 : ι → ι → ι . ∀ x7 . x2 (λ x8 . 0) (λ x8 : ι → (ι → ι) → ι . λ x9 . Inj0 (Inj1 x7))False.
Assume H4: ∀ x4 : ι → ι → (ι → ι) → ι . ∀ x5 : ι → ι . ∀ x6 . ∀ x7 : ι → ι . x1 (λ x8 x9 . setsum (setsum (Inj0 (Inj1 0)) x8) x6) (Inj1 (Inj1 0)) (x5 (setsum (setsum (setsum 0 0) (setsum 0 0)) (Inj0 (setsum 0 0)))).
Assume H5: ∀ x4 : ι → ι . ∀ x5 x6 x7 . In x7 (setsum x5 (x4 (setsum (Inj0 0) (setsum 0 0))))x1 (λ x8 x9 . setsum x7 (setsum (setsum x8 (setsum 0 0)) (setsum (setsum 0 0) 0))) (Inj1 (setsum (Inj0 (Inj1 0)) (setsum (setsum 0 0) (Inj1 0)))) (Inj1 0)x3 (λ x8 x9 . Inj0 (Inj1 x8)) (x4 0).
Assume H6: ∀ x4 : ι → ι → ι . ∀ x5 x6 x7 . In (Inj0 (setsum (setsum (setsum 0 0) (setsum 0 0)) x5)) (Inj1 x6)x0 (λ x8 : ι → ι → ι → ι . λ x9 : (ι → ι → ι)ι → ι → ι . 0) x5.
Assume H7: ∀ x4 : ι → ι . ∀ x5 x6 x7 . x0 (λ x8 : ι → ι → ι → ι . λ x9 : (ι → ι → ι)ι → ι → ι . 0) 0False.
Claim L8: ...
...
Claim L9: ...
...
Claim L10: In (Inj0 (setsum (setsum (setsum 0 0) (setsum 0 0)) 0)) (Inj1 0)
Apply unknownprop_92e9d75f0c2736874e0d273c2aebd9f3628211a178962928cb4fc08e22c09f27 with λ x4 x5 . In (Inj0 (setsum ... 0)) ....
...
Apply L8.
Apply L9 with 0.
The subproof is completed by applying L10.