Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ιιι be given.
Let x4 of type ιιι be given.
Apply explicit_Field_E with x0, x1, x2, x3, x4, ∀ x5 . x5x0∀ x6 . x6x0x4 (explicit_Field_minus x0 x1 x2 x3 x4 x5) x6 = explicit_Field_minus x0 x1 x2 x3 x4 (x4 x5 x6).
Assume H0: explicit_Field x0 x1 x2 x3 x4.
Assume H1: ∀ x5 . x5x0∀ x6 . x6x0x3 x5 x6x0.
Assume H2: ∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0x3 x5 (x3 x6 x7) = x3 (x3 x5 x6) x7.
Assume H3: ∀ x5 . x5x0∀ x6 . x6x0x3 x5 x6 = x3 x6 x5.
Assume H4: x1x0.
Assume H5: ∀ x5 . x5x0x3 x1 x5 = x5.
Assume H6: ∀ x5 . x5x0∃ x6 . and (x6x0) (x3 x5 x6 = x1).
Assume H7: ∀ x5 . x5x0∀ x6 . x6x0x4 x5 x6x0.
Assume H8: ∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0x4 x5 (x4 x6 x7) = x4 (x4 x5 x6) x7.
Assume H9: ∀ x5 . x5x0∀ x6 . x6x0x4 x5 x6 = x4 x6 x5.
Assume H10: x2x0.
Assume H11: x2 = x1∀ x5 : ο . x5.
Assume H12: ∀ x5 . x5x0x4 x2 x5 = x5.
Assume H13: ∀ x5 . x5x0(x5 = x1∀ x6 : ο . x6)∃ x6 . and (x6x0) (x4 x5 x6 = x2).
Assume H14: ∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0x4 x5 (x3 x6 x7) = x3 (x4 x5 x6) (x4 x5 x7).
Let x5 of type ι be given.
Assume H15: x5x0.
Let x6 of type ι be given.
Assume H16: x6x0.
Claim L17: ...
...
set y7 to be ...
set y8 to be ...
Claim L18: ∀ x9 : ι → ο . x9 y8x9 y7
Let x9 of type ιο be given.
Assume H18: x9 (explicit_Field_minus x2 x3 x4 x5 x6 (x6 y7 y8)).
...
Let x9 of type ιιο be given.
Apply L18 with λ x10 . x9 x10 y8x9 y8 x10.
Assume H19: x9 y8 y8.
The subproof is completed by applying H19.