Let x0 of type ι → ι → ο be given.
Let x1 of type ι → ι be given.
Let x2 of type ι → ι → ο be given.
Let x3 of type ι → ι → ι be given.
Let x4 of type ι → ι be given.
Let x5 of type ι → ι be given.
Let x6 of type ι be given.
Let x7 of type ι → ι → ο be given.
Let x8 of type ι be given.
Let x9 of type ι be given.
Let x10 of type ι be given.
Let x11 of type ι → ι → ι → ι be given.
Let x12 of type ι → ι → ι → ι → ι be given.
Let x13 of type ι → ι → ι be given.
Let x14 of type ι be given.
Let x15 of type ι be given.
Let x16 of type ι → ο be given.
Let x17 of type ι → ι be given.
Let x18 of type ι → ι be given.
Let x19 of type ι → ι be given.
Let x20 of type ι → ι be given.
Let x21 of type ι → ι → ο be given.
Let x22 of type ι → ι be given.
Let x23 of type ι → ο be given.
Let x24 of type ι → ι be given.
Let x25 of type ι → ι → ο be given.
Let x26 of type ι → ο be given.
Let x27 of type ι → ι → ι be given.
Let x28 of type ι → ι be given.
Let x29 of type ι → ι be given.
Let x30 of type ι → ι → ο be given.
Let x31 of type ι → ι → ι be given.
Let x32 of type ι be given.
Let x33 of type ι → ο be given.
Assume H5:
∀ x34 x35 . x33 x35 ⟶ (x35 = x34 ⟶ False) ⟶ x33 x34 ⟶ False.
Assume H6:
∀ x34 x35 . x0 x34 x35 ⟶ x33 x35 ⟶ False.
Assume H7:
∀ x34 . x33 x34 ⟶ (x34 = x32 ⟶ False) ⟶ False.
Assume H8:
∀ x34 x35 x36 . x0 x34 x35 ⟶ x2 x35 (x1 x36) ⟶ x33 x36 ⟶ False.
Assume H9:
∀ x34 x35 . x30 x34 (x31 x34 x35) ⟶ (x35 = x32 ⟶ False) ⟶ (x30 x34 (x29 x35) ⟶ False) ⟶ False.
Assume H10:
∀ x34 x35 . (x0 (x31 x34 x35) x35 ⟶ False) ⟶ (x35 = x32 ⟶ False) ⟶ (x30 x34 (x29 x35) ⟶ False) ⟶ False.
Assume H11:
∀ x34 x35 x36 . x0 x35 x36 ⟶ x2 x36 (x1 x34) ⟶ (x2 x35 x34 ⟶ False) ⟶ False.
Assume H12:
∀ x34 x35 . x30 x35 x34 ⟶ (x2 x35 (x1 x34) ⟶ False) ⟶ False.
Assume H13:
∀ x34 x35 . x2 x35 (x1 x34) ⟶ (x30 x35 x34 ⟶ False) ⟶ False.
Assume H14:
∀ x34 x35 . x2 x34 x35 ⟶ (x33 x35 ⟶ False) ⟶ (x0 x34 x35 ⟶ False) ⟶ False.
Assume H15:
∀ x34 . (x30 (x29 x34) (x28 x34) ⟶ False) ⟶ False.
Assume H16:
∀ x34 x35 x36 . x30 x35 x36 ⟶ x30 x36 x34 ⟶ (x30 x35 x34 ⟶ False) ⟶ False.
Assume H17:
∀ x34 x35 . x0 x35 x34 ⟶ (x2 x35 x34 ⟶ False) ⟶ False.
Assume H18:
∀ x34 . (x30 x34 x34 ⟶ False) ⟶ False.
Assume H19:
∀ x34 x35 . x2 x34 (x1 (x1 x35)) ⟶ (x27 x35 x34 = x29 x34 ⟶ False) ⟶ False.
Assume H20:
∀ x34 x35 . x2 x34 (x1 (x1 x35)) ⟶ (x3 x35 x34 = x28 x34 ⟶ False) ⟶ False.
Assume H21:
∀ x34 . x26 x34 ⟶ x23 x34 ⟶ (x25 (x24 x34) x34 ⟶ False) ⟶ False.
Assume H22:
∀ x34 . x26 x34 ⟶ x23 x34 ⟶ (x2 (x24 x34) (x1 (x4 x34)) ⟶ False) ⟶ False.
Assume H23:
∀ x34 . (x33 x34 ⟶ False) ⟶ (x21 (x22 x34) x34 ⟶ False) ⟶ False.
Assume H24:
∀ x34 . (x33 x34 ⟶ False) ⟶ (x2 (x22 x34) (x1 x34) ⟶ False) ⟶ False.
Assume H25:
∀ x34 . x21 (x20 ...) ... ⟶ False.