Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ιο be given.
Let x1 of type ιο be given.
Let x2 of type ι be given.
Let x3 of type ι be given.
Let x4 of type ι be given.
Let x5 of type ι be given.
Let x6 of type ι be given.
Let x7 of type ι be given.
Assume H0: ∀ x8 : ι → ο . x8 x2x8 x3x8 x4x8 x5x8 x6x8 x7∀ x9 . x0 x9x8 x9.
Assume H1: ∀ x8 : ι → ο . x8 x2x8 x3x8 x4x8 x5∀ x9 . x1 x9x8 x9.
Assume H2: ∀ x8 . x0 x8not (x1 x8)∀ x9 : ι → ο . x9 x6x9 x7x9 x8.
Assume H3: x0 x2.
Assume H4: x0 x3.
Assume H5: x0 x4.
Assume H6: x0 x5.
Assume H7: x0 x6.
Assume H8: x0 x7.
Assume H9: x1 x2.
Assume H10: x1 x3.
Assume H11: x1 x4.
Assume H12: x1 x5.
Assume H13: not (x1 x6).
Assume H14: not (x1 x7).
Assume H15: x2 = x3∀ x8 : ο . x8.
Assume H16: x2 = x4∀ x8 : ο . x8.
Assume H17: x2 = x5∀ x8 : ο . x8.
Assume H18: x2 = x6∀ x8 : ο . x8.
Assume H19: x2 = x7∀ x8 : ο . x8.
Assume H20: x3 = x4∀ x8 : ο . x8.
Assume H21: x3 = x5∀ x8 : ο . x8.
Assume H22: x3 = x6∀ x8 : ο . x8.
Assume H23: x3 = x7∀ x8 : ο . x8.
Assume H24: x4 = x5∀ x8 : ο . x8.
Assume H25: x4 = x6∀ x8 : ο . x8.
Assume H26: x4 = x7∀ x8 : ο . x8.
Assume H27: x5 = x6∀ x8 : ο . x8.
Assume H28: x5 = x7∀ x8 : ο . x8.
Assume H29: x6 = x7∀ x8 : ο . x8.
Let x8 of type ιιι be given.
Let x9 of type ιιι be given.
Let x10 of type ιιι be given.
Assume H30: ∀ x11 . x0 x11∀ x12 . x0 x12x0 (x8 x11 x12).
Assume H31: ∀ x11 . x0 x11∀ x12 . x1 x12x1 (x8 x11 x12).
Assume H32: ∀ x11 . x0 x11∀ x12 . x0 x12x8 x11 (x8 x11 x12) = x12.
Assume H33: ∀ x11 . x0 x11x8 x11 x2 = x3.
Assume H34: ∀ x11 . x0 x11∀ x12 . x0 x12x0 (x9 x11 x12).
Assume H35: ∀ x11 . x0 x11∀ x12 . x1 x12x1 (x9 x11 x12).
Assume H36: ∀ x11 . x0 x11∀ x12 . x0 x12x9 x11 (x9 x11 x12) = x12.
Assume H37: ∀ x11 . x0 x11x9 x11 x2 = x4.
Assume H38: ∀ x11 . ...∀ x12 . x0 x12x0 (x10 x11 x12).
...