Let x0 of type ι → ι → ο be given.
Let x1 of type ι → ι be given.
Let x2 of type ι → ι → ο be given.
Let x3 of type ι → ι → ο be given.
Let x4 of type ι → ο be given.
Let x5 of type ι → ο be given.
Let x6 of type ι → ι → ι → ι → ι → ο be given.
Let x7 of type ι → ι → ι → ο be given.
Let x8 of type ι → ι be given.
Let x9 of type ι → ο be given.
Let x10 of type ι be given.
Let x11 of type ι → ι → ι → ι be given.
Let x12 of type ι → ι → ι → ι be given.
Let x13 of type ι → ι be given.
Let x14 of type ι be given.
Let x15 of type ι → ι → ι → ι → ι be given.
Let x16 of type ι → ι → ι → ι → ι be given.
Let x17 of type ι → ι → ο be given.
Let x18 of type ι be given.
Let x19 of type ι be given.
Let x20 of type ι be given.
Let x21 of type ι be given.
Let x22 of type ι be given.
Let x23 of type ι → ι → ι → ι → ο be given.
Let x24 of type ι be given.
Let x25 of type ι → ι be given.
Let x26 of type ι → ο be given.
Let x27 of type ι → ο be given.
Let x28 of type ι → ι be given.
Let x29 of type ι → ι be given.
Let x30 of type ι → ο be given.
Let x31 of type ι → ο be given.
Let x32 of type ι → ι be given.
Let x33 of type ι → ο be given.
Let x34 of type ι → ι → ι be given.
Let x35 of type ι → ι → ι be given.
Let x36 of type ι → ι → ο be given.
Let x37 of type ι be given.
Let x38 of type ι → ο be given.
Assume H5:
∀ x39 x40 . x38 x40 ⟶ (x40 = x39 ⟶ False) ⟶ x38 x39 ⟶ False.
Assume H6:
∀ x39 x40 . x0 x39 x40 ⟶ x38 x40 ⟶ False.
Assume H7:
∀ x39 . x38 x39 ⟶ (x39 = x37 ⟶ False) ⟶ False.
Assume H8:
∀ x39 x40 x41 . x0 x39 x40 ⟶ x2 x40 (x1 x41) ⟶ x38 x41 ⟶ False.
Assume H9:
∀ x39 x40 x41 . x0 x40 x41 ⟶ x2 x41 (x1 x39) ⟶ (x2 x40 x39 ⟶ False) ⟶ False.
Assume H10:
∀ x39 x40 . x3 x40 x39 ⟶ (x2 x40 (x1 x39) ⟶ False) ⟶ False.
Assume H11:
∀ x39 x40 . x2 x40 (x1 x39) ⟶ (x3 x40 x39 ⟶ False) ⟶ False.
Assume H12:
∀ x39 x40 x41 x42 x43 x44 x45 . (x4 x45 ⟶ False) ⟶ x9 x45 ⟶ x5 x45 ⟶ x2 x39 (x8 x45) ⟶ x2 x44 (x8 x45) ⟶ x2 x40 (x8 x45) ⟶ x2 x43 (x8 x45) ⟶ x2 x41 (x1 (x8 x45)) ⟶ x2 x42 (x1 (x8 x45)) ⟶ x0 x39 x41 ⟶ x0 x44 x41 ⟶ x0 x40 x42 ⟶ x0 x43 x42 ⟶ x7 x45 x41 x42 ⟶ (x6 x45 x39 x44 x40 x43 ⟶ False) ⟶ False.
Assume H13:
∀ x39 x40 x41 . (x4 x41 ⟶ False) ⟶ x9 x41 ⟶ x5 x41 ⟶ x2 x39 (x1 (x8 x41)) ⟶ x2 x40 (x1 (x8 x41)) ⟶ x7 x41 x39 x40 ⟶ (x36 x40 x41 ⟶ False) ⟶ False.
Assume H14:
∀ x39 x40 x41 . (x4 x41 ⟶ False) ⟶ x9 x41 ⟶ x5 x41 ⟶ x2 x39 (x1 (x8 x41)) ⟶ x2 x40 (x1 (x8 x41)) ⟶ x7 x41 x39 x40 ⟶ (x36 x39 x41 ⟶ False) ⟶ False.
Assume H15:
∀ x39 x40 . x2 x39 x40 ⟶ (x38 x40 ⟶ False) ⟶ (x0 x39 x40 ⟶ False) ⟶ False.
Assume H16:
∀ x39 x40 . x0 x40 x39 ⟶ (x2 x40 x39 ⟶ False) ⟶ False.
Assume H17:
∀ x39 x40 . (x4 x40 ⟶ False) ⟶ x9 x40 ⟶ x5 x40 ⟶ x2 x39 (x1 (x8 x40)) ⟶ x36 x39 x40 ⟶ x35 x39 x40 = x34 x39 x40 ⟶ False.