Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ιι be given.
Let x2 of type ιιι be given.
Let x3 of type ιιιι be given.
Let x4 of type ιιιιι be given.
Let x5 of type ιιιιιο be given.
Let x6 of type ιιιιιι be given.
Let x7 of type ι be given.
Assume H0: prim1 x7 (2aab0.. x0 x1 x2 x3 x4 x5 x6).
Apply unknownprop_d894af75fae006d7c8f01f155e4cae4c3cffbd328d070aad2fe18b3235b74596 with x0, x1, x2, x3, x4, x5, x6, x7, ∃ x8 . and (prim1 x8 x0) (∃ x9 . and (prim1 x9 (x1 x8)) (∃ x10 . and (prim1 x10 (x2 x8 x9)) (∃ x11 . and (prim1 x11 (x3 x8 x9 x10)) (∃ x12 . and (prim1 x12 (x4 x8 x9 x10 x11)) (and (x5 x8 x9 x10 x11 x12) (x7 = x6 x8 x9 x10 x11 x12)))))) leaving 2 subgoals.
The subproof is completed by applying H0.
Let x8 of type ι be given.
Assume H1: prim1 x8 x0.
Let x9 of type ι be given.
Assume H2: prim1 x9 (x1 x8).
Let x10 of type ι be given.
Assume H3: prim1 x10 (x2 x8 x9).
Let x11 of type ι be given.
Assume H4: prim1 x11 (x3 x8 x9 x10).
Let x12 of type ι be given.
Assume H5: prim1 x12 (x4 x8 x9 x10 x11).
Assume H6: x5 x8 x9 x10 x11 x12.
Assume H7: x7 = x6 x8 x9 x10 x11 x12.
Let x13 of type ο be given.
Assume H8: ∀ x14 . and (prim1 x14 x0) (∃ x15 . and (prim1 x15 (x1 x14)) (∃ x16 . and (prim1 x16 (x2 x14 x15)) (∃ x17 . and (prim1 x17 (x3 x14 x15 x16)) (∃ x18 . and (prim1 x18 (x4 x14 x15 x16 x17)) (and (x5 x14 x15 x16 x17 x18) (x7 = x6 x14 x15 x16 x17 x18))))))x13.
Apply H8 with x8.
Apply andI with prim1 x8 x0, ∃ x14 . and (prim1 x14 (x1 x8)) (∃ x15 . and (prim1 x15 (x2 x8 x14)) (∃ x16 . and (prim1 x16 (x3 x8 x14 x15)) (∃ x17 . and (prim1 x17 (x4 x8 x14 x15 x16)) (and (x5 x8 x14 x15 x16 x17) (x7 = x6 x8 x14 x15 x16 x17))))) leaving 2 subgoals.
The subproof is completed by applying H1.
Let x14 of type ο be given.
Assume H9: ∀ x15 . and (prim1 x15 (x1 x8)) (∃ x16 . and (prim1 x16 (x2 x8 x15)) (∃ x17 . and (prim1 x17 (x3 x8 x15 x16)) (∃ x18 . and (prim1 x18 (x4 x8 x15 x16 x17)) (and (x5 x8 x15 x16 x17 x18) ...))))x14.
...