Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ιιι be given.
Let x4 of type ιιι be given.
Let x5 of type ιιο be given.
Let x6 of type ι be given.
Apply explicit_OrderedField_E with x0, x1, x2, x3, x4, x5, x6x0explicit_Field x6 x1 x2 x3 x4∀ x7 : ο . ((∀ x8 . x8x6explicit_Field_minus x6 x1 x2 x3 x4 x8 = explicit_Field_minus x0 x1 x2 x3 x4 x8)(∀ x8 . x8x6explicit_Field_minus x0 x1 x2 x3 x4 x8x6){x8 ∈ x0|natOfOrderedField_p x0 x1 x2 x3 x4 x5 x8} = {x8 ∈ x6|natOfOrderedField_p x6 x1 x2 x3 x4 x5 x8}{x8 ∈ {x8 ∈ x0|natOfOrderedField_p x0 x1 x2 x3 x4 x5 x8}|x8 = x1∀ x9 : ο . x9} = {x8 ∈ {x8 ∈ x6|natOfOrderedField_p x6 x1 x2 x3 x4 x5 x8}|x8 = x1∀ x9 : ο . x9}{x8 ∈ x0|or (or (explicit_Field_minus x0 x1 x2 x3 x4 x8{x9 ∈ {x9 ∈ x0|natOfOrderedField_p x0 x1 x2 x3 x4 x5 x9}|x9 = x1∀ x10 : ο . x10}) (x8 = x1)) (x8{x9 ∈ {x9 ∈ x0|natOfOrderedField_p x0 x1 x2 x3 x4 x5 x9}|x9 = x1∀ x10 : ο . x10})} = {x8 ∈ x6|or (or (explicit_Field_minus x6 x1 x2 x3 x4 x8{x9 ∈ {x9 ∈ x6|natOfOrderedField_p x6 x1 x2 x3 x4 x5 x9}|x9 = x1∀ x10 : ο . x10}) (x8 = x1)) (x8{x9 ∈ {x9 ∈ x6|natOfOrderedField_p x6 x1 x2 x3 x4 x5 x9}|x9 = x1∀ x10 : ο . x10})}{x8 ∈ x0|explicit_OrderedField_rationalp x0 x1 x2 x3 x4 x5 x8} = {x8 ∈ x6|explicit_OrderedField_rationalp x6 x1 x2 x3 x4 x5 x8}x7)x7.
Assume H0: explicit_OrderedField x0 x1 x2 x3 x4 x5.
Apply explicit_Field_E with x0, x1, x2, x3, x4, .....................∀ x7 : ο . (............{x8 ∈ x0|or (or (explicit_Field_minus x0 x1 x2 x3 x4 x8{x9 ∈ {x9 ∈ ...|...}|...}) ...) ...} = ...{x8 ∈ x0|explicit_OrderedField_rationalp x0 x1 x2 x3 x4 x5 x8} = {x8 ∈ x6|explicit_OrderedField_rationalp x6 x1 x2 x3 x4 x5 x8}x7)x7.
...