Search for blocks/addresses/...

Proofgold Proof

pf
Apply unknownprop_669df0da86db4f986bae532f93288cb46feb5b77310c7f6de7766507585de4c6 with λ x0 x1 : ι → ι . ∀ x2 x3 . prim1 (x0 x3) x2prim1 x3 (e76d4.. x2).
Let x0 of type ι be given.
Let x1 of type ι be given.
Assume H0: prim1 (f6917.. x1) x0.
Apply unknownprop_31dc82295b7aa4a340f2278c1cf4aa729add061fe389e3a99b659752ce7d8635 with x1, λ x2 x3 . prim1 x2 (a4c2a.. x0 (λ x4 . ∃ x5 . f6917.. x5 = x4) (λ x4 . 158d3.. x4)).
Apply unknownprop_9c424e90871cd9e3a05e6a3be208792c52ad17517e2db8ef40187e46ac0e9a6e with x0, λ x2 . ∃ x3 . f6917.. x3 = x2, 158d3.., f6917.. x1 leaving 2 subgoals.
The subproof is completed by applying H0.
Let x2 of type ο be given.
Assume H1: ∀ x3 . f6917.. x3 = f6917.. x1x2.
Apply H1 with x1.
Let x3 of type ιιο be given.
Assume H2: x3 (f6917.. x1) (f6917.. x1).
The subproof is completed by applying H2.