Apply unknownprop_669df0da86db4f986bae532f93288cb46feb5b77310c7f6de7766507585de4c6 with
λ x0 x1 : ι → ι . ∀ x2 x3 . prim1 (x0 x3) x2 ⟶ prim1 x3 (e76d4.. x2).
Let x0 of type ι be given.
Let x1 of type ι be given.
Apply unknownprop_31dc82295b7aa4a340f2278c1cf4aa729add061fe389e3a99b659752ce7d8635 with
x1,
λ x2 x3 . prim1 x2 (a4c2a.. x0 (λ x4 . ∃ x5 . f6917.. x5 = x4) (λ x4 . 158d3.. x4)).
Apply unknownprop_9c424e90871cd9e3a05e6a3be208792c52ad17517e2db8ef40187e46ac0e9a6e with
x0,
λ x2 . ∃ x3 . f6917.. x3 = x2,
158d3..,
f6917.. x1 leaving 2 subgoals.
The subproof is completed by applying H0.
Let x2 of type ο be given.
Apply H1 with
x1.
Let x3 of type ι → ι → ο be given.
The subproof is completed by applying H2.