Search for blocks/addresses/...

Proofgold Proof

pf
Claim L0: ...
...
Let x0 of type ιιιιιιιιιιιιιιιιιι be given.
Let x1 of type ιιιιιιιιιιιιιιιιιι be given.
Let x2 of type ιιιιιιιιιιιιιιιιιι be given.
Assume H1: Church17_p x0.
Assume H2: Church17_p x1.
Assume H3: Church17_p x2.
Apply H1 with λ x3 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . ((λ x4 x5 . x4) = λ x4 x5 . x3 x5 x5 x5 x5 x5 x5 x5 x5 x5 x4 x4 x4 x4 x4 x4 x4 x4)((λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 . x4) = x3∀ x4 : ο . x4)((λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 . x4) = x1∀ x4 : ο . x4)((λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 . x4) = x2∀ x4 : ο . x4)(x3 = x1∀ x4 : ο . x4)(x3 = x2∀ x4 : ο . x4)(x1 = x2∀ x4 : ο . x4)(TwoRamseyGraph_4_4_Church17 (λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 . x4) x3 = λ x4 x5 . x5)(TwoRamseyGraph_4_4_Church17 (λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 . x4) x1 = λ x4 x5 . x5)(TwoRamseyGraph_4_4_Church17 (λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 . x4) x2 = λ x4 x5 . x5)(TwoRamseyGraph_4_4_Church17 x3 x1 = λ x4 x5 . x5)(TwoRamseyGraph_4_4_Church17 x3 x2 = λ x4 x5 . x5)(TwoRamseyGraph_4_4_Church17 x1 x2 = λ x4 x5 . x5)False leaving 17 subgoals.
Assume H4: (λ x3 x4 . x3) = λ x3 x4 . (λ x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 . x5) x4 x4 x4 x4 x4 x4 x4 x4 x4 x3 x3 x3 x3 x3 x3 x3 x3.
Apply FalseE with (((λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 . x3) = λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 . x3)∀ x3 : ο . x3)((λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 . x3) = x1∀ x3 : ο . x3)((λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 . x3) = x2∀ x3 : ο . x3)((λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 . x3) = x1∀ x3 : ο . x3)((λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 . x3) = x2∀ x3 : ο . x3)(x1 = x2∀ x3 : ο . x3)(TwoRamseyGraph_4_4_Church17 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 . x3) (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 . x3) = λ x3 x4 . x4)(TwoRamseyGraph_4_4_Church17 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 . x3) x1 = λ x3 x4 . x4)(TwoRamseyGraph_4_4_Church17 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 . x3) x2 = λ x3 x4 . x4)(TwoRamseyGraph_4_4_Church17 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 . x3) x1 = λ x3 x4 . x4)(TwoRamseyGraph_4_4_Church17 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 . x3) x2 = λ x3 x4 . x4)(TwoRamseyGraph_4_4_Church17 x1 x2 = λ x3 x4 . x4)False.
Apply L0.
The subproof is completed by applying H4.
Assume H4: (λ x3 x4 . x3) = λ x3 x4 . (λ x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 . x6) x4 x4 x4 x4 x4 x4 x4 x4 x4 x3 x3 x3 x3 x3 x3 x3 x3.
Apply FalseE with .....................TwoRamseyGraph_4_4_Church17 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 . x3) x1 = ...(TwoRamseyGraph_4_4_Church17 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 . x3) x2 = λ x3 x4 . x4)(TwoRamseyGraph_4_4_Church17 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 . x4) x1 = λ x3 x4 . x4)(TwoRamseyGraph_4_4_Church17 (λ x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 . x4) x2 = λ x3 x4 . x4)(TwoRamseyGraph_4_4_Church17 x1 x2 = λ x3 x4 . x4)False.
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...