Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ιιι be given.
Let x4 of type ιιι be given.
Apply explicit_Field_E with x0, x1, x2, x3, x4, ∀ x5 : ο . (.........(∀ x6 . prim1 ... ...x3 (explicit_Field_minus x0 x1 x2 x3 x4 x6) x6 = x1)(∀ x6 . prim1 x6 x0x3 x6 (explicit_Field_minus x0 x1 x2 x3 x4 x6) = x1)(∀ x6 . prim1 x6 x0∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0x4 (x3 x6 x7) x8 = x3 (x4 x6 x8) (x4 x7 x8))(∀ x6 . prim1 x6 x0∀ x7 . prim1 x7 x0explicit_Field_minus x0 x1 x2 x3 x4 (x3 x6 x7) = x3 (explicit_Field_minus x0 x1 x2 x3 x4 x6) (explicit_Field_minus x0 x1 x2 x3 x4 x7))(∀ x6 . prim1 x6 x0∀ x7 . prim1 x7 x0x4 (explicit_Field_minus x0 x1 x2 x3 x4 x6) x7 = explicit_Field_minus x0 x1 x2 x3 x4 (x4 x6 x7))(∀ x6 . prim1 x6 x0∀ x7 . prim1 x7 x0x4 x6 (explicit_Field_minus x0 x1 x2 x3 x4 x7) = explicit_Field_minus x0 x1 x2 x3 x4 (x4 x6 x7))(∀ x6 . prim1 x6 x0x4 x1 x6 = x1)(∀ x6 . prim1 x6 x0x4 x6 x1 = x1)prim1 (explicit_Field_minus x0 x1 x2 x3 x4 x2) x0(∀ x6 . prim1 x6 x0∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0prim1 (x4 x6 (x4 x7 x8)) x0)(∀ x6 . prim1 x6 x0∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 x0x3 (x3 x6 x7) (x3 x8 x9) = x3 (x3 x6 x9) (x3 x7 x8))(∀ x6 . prim1 x6 x0∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 x0x3 (x3 x6 x7) (x3 x8 x9) = x3 (x3 x6 x8) (x3 x7 x9))x5)x5.
...