Search for blocks/addresses/...

Proofgold Proof

pf
Assume H0: ∃ x0 : ι → ι . ∃ x1 : ι → ι → ι → ι . ∃ x2 x3 : ι → ι . MetaAdjunction_strict (λ x4 . True) HomSet lam_id (λ x4 x5 x6 . lam_comp x4) 8b17e.. BinRelnHom struct_id struct_comp x0 x1 (λ x4 . ap x4 0) (λ x4 x5 x6 . x6) x2 x3.
Apply H0 with False.
Let x0 of type ιι be given.
Assume H1: (λ x1 : ι → ι . ∃ x2 : ι → ι → ι → ι . ∃ x3 x4 : ι → ι . MetaAdjunction_strict (λ x5 . True) HomSet lam_id (λ x5 x6 x7 . lam_comp x5) 8b17e.. BinRelnHom struct_id struct_comp x1 x2 (λ x5 . ap x5 0) (λ x5 x6 x7 . x7) x3 x4) x0.
Apply H1 with False.
Let x1 of type ιιιι be given.
Assume H2: (λ x2 : ι → ι → ι → ι . ∃ x3 x4 : ι → ι . MetaAdjunction_strict (λ x5 . True) HomSet lam_id (λ x5 x6 x7 . lam_comp x5) 8b17e.. BinRelnHom struct_id struct_comp x0 x2 (λ x5 . ap x5 0) (λ x5 x6 x7 . x7) x3 x4) x1.
Apply H2 with False.
Let x2 of type ιι be given.
Assume H3: (λ x3 : ι → ι . ∃ x4 : ι → ι . MetaAdjunction_strict (λ x5 . True) HomSet lam_id (λ x5 x6 x7 . lam_comp x5) 8b17e.. BinRelnHom struct_id struct_comp x0 x1 (λ x5 . ap x5 0) (λ x5 x6 x7 . x7) x3 x4) x2.
Apply H3 with False.
Let x3 of type ιι be given.
Assume H4: MetaAdjunction_strict (λ x4 . True) HomSet (λ x4 . lam_id x4) (λ x4 x5 x6 x7 x8 . lam_comp x4 x7 x8) 8b17e.. BinRelnHom struct_id struct_comp x0 x1 (λ x4 . ap x4 0) (λ x4 x5 x6 . x6) x2 x3.
Apply unknownprop_9a5dd92d37ccfa65696c11e832d98097811bf4001ca7eb00f4f9586fc6e6bb6b with λ x4 . True, HomSet, lam_id, λ x4 x5 x6 x7 x8 . lam_comp x4 x7 x8, 8b17e.., BinRelnHom, struct_id, struct_comp, x0, x1, λ x4 . ap x4 0, λ x4 x5 x6 . x6, x2, x3, False leaving 2 subgoals.
The subproof is completed by applying H4.
Assume H5: MetaFunctor_strict (λ x4 . True) HomSet lam_id (λ x4 x5 x6 . lam_comp x4) 8b17e.. BinRelnHom struct_id struct_comp x0 x1.
Assume H6: MetaFunctor 8b17e.. BinRelnHom struct_id struct_comp (λ x4 . True) HomSet lam_id (λ x4 x5 x6 . lam_comp x4) (λ x4 . ap x4 0) (λ x4 x5 x6 . x6).
Assume H7: MetaNatTrans (λ x4 . True) HomSet lam_id (λ x4 x5 x6 . lam_comp x4) (λ x4 . True) HomSet lam_id (λ x4 x5 x6 . lam_comp x4) (λ x4 . x4) (λ x4 x5 x6 . x6) (λ x4 . ap (x0 x4) 0) x1 x2.
Assume H8: MetaNatTrans 8b17e.. BinRelnHom struct_id struct_comp 8b17e.. BinRelnHom struct_id struct_comp (λ x4 . x0 (ap x4 0)) (λ x4 x5 . x1 (ap x4 0) (ap x5 0)) (λ x4 . x4) (λ x4 x5 x6 . x6) x3.
Assume H9: MetaAdjunction (λ x4 . True) HomSet lam_id (λ x4 x5 x6 . lam_comp x4) 8b17e.. BinRelnHom ... ... ... ... ... ... ... ....
...