Apply unknownprop_6482952e7e0a4bf00d28fb92ecd380f707bb40e0d65cb44f18a4b021cf4cfdbf with
∃ x0 . ∃ x1 : ι → ι . MetaCat_initial_p 9f253.. UnaryFuncHom struct_id struct_comp x0 x1.
Let x0 of type ι be given.
Apply H0 with
∃ x1 . ∃ x2 : ι → ι . MetaCat_initial_p 9f253.. UnaryFuncHom struct_id struct_comp x1 x2.
Let x1 of type ι → ι be given.
Let x2 of type ο be given.
Apply H2 with
(λ x3 . pack_u (setsum x3 x3) (combine_funcs x3 x3 Inj1 Inj1)) x0.
Apply unknownprop_9e4a4e86d499216c8785bdcb6ea98c9ec4aee7ee82bde465e88bf0a451f2bef0 with
λ x3 . True,
HomSet,
λ x3 . lam x3 (λ x4 . x4),
λ x3 x4 x5 x6 x7 . lam x3 (λ x8 . ap x6 (ap x7 x8)),
9f253..,
UnaryFuncHom,
struct_id,
struct_comp,
λ x3 . pack_u (setsum x3 x3) (combine_funcs x3 x3 Inj1 Inj1),
λ x3 x4 x5 . lam (setsum x3 x3) (λ x6 . combine_funcs x3 x3 (λ x7 . Inj0 (ap x5 x7)) (λ x7 . Inj1 (ap x5 x7)) x6),
λ x3 . ap x3 0,
λ x3 x4 x5 . x5,
λ x3 . lam x3 (λ x4 . Inj0 x4),
λ x3 . unpack_u_i x3 (λ x4 . λ x5 : ι → ι . lam (setsum x4 x4) (λ x6 . combine_funcs x4 x4 (λ x7 . x7) x5 x6)),
x0,
x1 leaving 2 subgoals.
The subproof is completed by applying unknownprop_cc47c963ab9cc0e5e798780a66a4301b5c1e3c6b4bcc2abf1af8a16f9b487402.
The subproof is completed by applying H1.