pf |
---|
Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι → ι → ι be given.
Let x3 of type ι → ι → ι be given.
Let x4 of type ι → ι → ι be given.
Let x5 of type ι → ι → ι be given.
Let x6 of type ι → ι be given.
Let x7 of type ι → ι be given.
Let x8 of type ι → ι → ο be given.
Let x9 of type ι → ι → ο be given.
Apply and5I with x0 = x1, ∀ x10 . prim1 x10 x0 ⟶ ∀ x11 . prim1 x11 x0 ⟶ x2 x10 x11 = x3 x10 x11, ∀ x10 . prim1 x10 x0 ⟶ ∀ x11 . prim1 x11 x0 ⟶ x4 x10 x11 = x5 x10 x11, ∀ x10 . prim1 x10 x0 ⟶ x6 x10 = x7 x10, ∀ x10 . prim1 x10 x0 ⟶ ∀ x11 . prim1 x11 x0 ⟶ x8 x10 x11 = x9 x10 x11 leaving 5 subgoals.
The subproof is completed by applying L2.
Let x10 of type ι be given.
Let x11 of type ι be given.
Apply unknownprop_6b836e8861743f5273e26908db8398c50bb9a4cc55b329c3ce9b1c64d354155b with x0, x2, x4, x6, x8, x10, x11, λ x12 x13 . x13 = x3 x10 x11 leaving 3 subgoals.
The subproof is completed by applying H3.
The subproof is completed by applying H4.
Apply L2 with λ x12 x13 . prim1 x10 x12.
The subproof is completed by applying H3.
Apply L2 with λ x12 x13 . prim1 x11 x12.
The subproof is completed by applying H4.
Apply H0 with λ x12 x13 . e3162.. (f482f.. x13 (4ae4a.. 4a7ef..)) x10 x11 = x3 x10 x11.
Let x12 of type ι → ι → ο be given.
Apply unknownprop_6b836e8861743f5273e26908db8398c50bb9a4cc55b329c3ce9b1c64d354155b with x1, x3, x5, x7, x9, x10, x11, λ x13 x14 . x12 x14 x13 leaving 2 subgoals.
The subproof is completed by applying L5.
The subproof is completed by applying L6.
Let x10 of type ι be given.
Let x11 of type ι be given.
Apply unknownprop_2d22d2ea3328bddbc05fa20bd454c9c6cf8ca53823a7ff88f2e2debf0510cdfd with x0, x2, x4, x6, x8, x10, x11, λ x12 x13 . x13 = x5 x10 x11 leaving 3 subgoals.
The subproof is completed by applying H3.
The subproof is completed by applying H4.
Apply L2 with λ x12 x13 . prim1 x10 x12.
The subproof is completed by applying H3.
Apply L2 with λ x12 x13 . prim1 x11 x12.
The subproof is completed by applying H4.
Apply H0 with λ x12 x13 . e3162.. (f482f.. x13 (4ae4a.. (4ae4a.. 4a7ef..))) x10 x11 = x5 x10 x11.
Let x12 of type ι → ι → ο be given.
Apply unknownprop_2d22d2ea3328bddbc05fa20bd454c9c6cf8ca53823a7ff88f2e2debf0510cdfd with x1, x3, x5, x7, x9, x10, x11, λ x13 x14 . x12 x14 x13 leaving 2 subgoals.
The subproof is completed by applying L5.
The subproof is completed by applying L6.
Let x10 of type ι be given.
Apply unknownprop_0a08efdef205751a73aef748e9cd0f5472bd08911528d0539b19592a1d4207b7 with x0, x2, x4, x6, x8, x10, λ x11 x12 . x12 = x7 x10 leaving 2 subgoals.
The subproof is completed by applying H3.
Apply L2 with λ x11 x12 . prim1 x10 x11.
The subproof is completed by applying H3.
Apply H0 with λ x11 x12 . f482f.. (f482f.. x12 (4ae4a.. (4ae4a.. (4ae4a.. 4a7ef..)))) x10 = x7 x10.
Let x11 of type ι → ι → ο be given.
Apply unknownprop_0a08efdef205751a73aef748e9cd0f5472bd08911528d0539b19592a1d4207b7 with x1, x3, x5, x7, x9, x10, λ x12 x13 . x11 x13 x12.
The subproof is completed by applying L4.
Let x10 of type ι be given.
Let x11 of type ι be given.
Apply unknownprop_eda749e193ae6abb1c69532f6899877601ce28055c6e5299f2d1815c32b119f0 with x0, x2, x4, x6, x8, x10, x11, λ x12 x13 : ο . x13 = x9 x10 x11 leaving 3 subgoals.
The subproof is completed by applying H3.
The subproof is completed by applying H4.
Apply H0 with λ x12 x13 . 2b2e3.. ... ... ... = ....
■
|
|