Let x0 of type ι be given.
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ι → ι → ι be given.
Let x4 of type ι → ι → ι be given.
Let x5 of type ι → ι → ο be given.
Let x6 of type ι → ι → ι be given.
Apply explicit_Reals_E with
x0,
x1,
x2,
x3,
x4,
x5,
... ⟶ ∀ x7 . ... ⟶ ∀ x8 . ... ⟶ ∀ x9 . ... ⟶ (λ x10 x11 . x6 (x3 (x4 ((λ x12 . prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x12 = x6 x13 x14)))) x10) ((λ x12 . prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x12 = x6 x13 x14)))) x11)) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 ((λ x12 . prim0 (λ x13 . and (x13 ∈ x0) (x12 = x6 ((λ x14 . prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x14 = x6 x15 x16)))) x12) x13))) x10) ((λ x12 . prim0 (λ x13 . and (x13 ∈ x0) (x12 = x6 ((λ x14 . prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x14 = x6 x15 x16)))) x12) x13))) x11)))) (x3 (x4 ((λ x12 . prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x12 = x6 x13 x14)))) x10) ((λ x12 . prim0 (λ x13 . and (x13 ∈ x0) (x12 = x6 ((λ x14 . prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x14 = x6 x15 x16)))) x12) x13))) x11)) (x4 ((λ x12 . prim0 (λ x13 . and (x13 ∈ x0) (x12 = x6 ((λ x14 . prim0 (λ x15 . and (x15 ∈ x0) (∃ x16 . and (x16 ∈ x0) (x14 = x6 x15 x16)))) x12) x13))) x10) ((λ x12 . prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x12 = x6 x13 x14)))) x11)))) x7 ((λ x10 x11 . x6 (x3 ((λ x12 . prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x12 = x6 x13 x14)))) x10) ((λ x12 . prim0 (λ x13 . and (x13 ∈ x0) (∃ x14 . and (x14 ∈ x0) (x12 = x6 x13 x14)))) x11)) (x3 ((λ x12 . prim0 (λ x13 . and (x13 ∈ x0) (x12 = x6 ((λ x14 . prim0 (λ x15 . and (x15 ∈ x0) ...)) ...) ...))) ...) ...)) ... ...) = ....